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Resumen 

Hoy en día, el contenido multimedia está en todas partes. Muchas aplicaciones utilizan 

audio, imágenes y vídeo. En los últimos 20 años numerosos avances se han hecho en las 

tecnologías de compilación y microarquitectura para mejorar el Instruction-Level 

Parallelism (ILP). A medida que aplicaciones cada vez más exigentes han aparecido, una 

serie de diferentes microarquitecturas han surgido para afrontar estos nuevos retos. Un 

gran número de técnicas microarquitecturales han surgido para tratar con ellos:  pipelining, 

superscalar, out-of-order, multithreading, etc. 

El objetivo primario de todas estas técnicas es aumentan el ILP a nivel de core. Otra 

alternativa para incrementar el rendimiento es emplear Data-Level Parallelism (DLP). Esta 

técnica incrementa el rendimiento en aplicaciones con operaciones altamente repetitivas. 

DLP efectúa la misma operación en múltiples datos. Los primeros procesadores en utilizar 

DLP fueron los procesadores vectoriales. La gran mayoría de las implementaciones 

modernas emplean vectores pequeños de tamaño fijo e instrucciones orientadas a 

multimedia. A este tipo de implementaciones se les conoce típicamente como Single 

Instruction Multiple Data (SIMD). 

La actual y próxima generación de dispositivos móviles y embebidos requieren de soporte 

para aplicaciones multimedia para ser competitivos. La técnica más popular a nivel de micro 

arquitectura para hacer frente a estos requisitos es utilizar extensiones multimedia además 

del conjunto de instrucciones tradicional. Su alto rendimiento en operaciones de cómputo 

además de su hardware simplificado ofrece una gran opción de cara al consumo 

energéticamente eficiente. Además, sus unidades funcionales y mecanismos de control 

simples hacen posible el escalar a longitudes de vectores mayores sin demasiada 

complicación. 

MIPS surgió como fruto de una investigación académica y desde entonces ha sido una de 

las arquitecturas preferidas para la enseñanza de Arquitectura de Computadoras en las 

universidades de todo el mundo. Otras arquitecturas como x86 o ARM resultan ser 

demasiado complejas de entender para los estudiantes universitarios no siendo suficiente 

un único curso para su total entendimiento. 

La gran mayoría de micro arquitecturas populares y comerciales hoy en día poseen de por 

lo menos una implementación de una unidad de extensión multimedia, conocidas 

simplemente por unidad SIMD. Algunos ejemplos son, x86-64 (MMX, SSE, AVX), PowerPC 

(AltiVec), ARM (Neon), MIPS (MDMX, MSA), y así sucesivamente. El presente trabajo se 

centra en la micro arquitectura MIPS debido a que sigue la filosofía RISC (Reduced 
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Instruction Set Computer) muy de cerca, lo que es deseable, ya que simplifica en gran 

medida la implementación y es fácil de entender por los estudiantes. 

La primer implementación SIMD para MIPS fue MIPS Digital Media Extension (MDMX) que 

apoyó video, procesamiento de píxeles audio y gráficos mediante la introducción de dos 

vectores formatos de números enteros pequeños. Estos vectores tienen una anchura de 64 

bits, en forma de signo de 16 bits sin signo u 8 números enteros de 8 bits. MDMX es bastante 

antiguo, y nunca llegó a la producción. La más reciente implementación SIMD para MIPS 

apareció en 2014 como un add-on de MIPS32 / 64 Release 5. Se llama MIPS SIMD 

Architecture (MSA). Está diseñado para apoyar a los vectores de 128 bits de 8, 16, vectores 

enteros 32 y 64 bits; Elementos de punto flotante de 16 y 32 bits de punto fijo, o de 32 y 64 

bits. 

Hemos decidido implementar el MSA ISA en una FPGA, junto con una aplicación MIPS-like 

(soft-core). Debido a que MSA no está diseñado para la computación de propósito general 

tomamos un núcleo MIPS32 del sitio opencores.org, y lo actualizamos con los elementos 

necesarios (instrucciones) del MIPS Release 6, así como la micro arquitectura y las unidades 

de control para utilizar el módulo MSA como un coprocesador. Hemos creado además un 

banco de pruebas y adaptado algunos micro benchmarks embebidos para probar el 

coprocesador MSA. 
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Abstract 

Nowadays, multimedia content is everywhere. Many applications use audio, images, and 

video. Over the last 20 years significant advances have been made in compilation and 

microarchitecture technologies to improve the instruction-level parallelism (ILP). As more 

demanding applications have appeared, a number of different microarchitectures have 

emerged to deal with them. A number of microarchitectural techniques have emerged to 

deal with them: pipelining, superscalar, out-of-order, multithreading, etc. 

All these techniques increase the ILP at core level. An alternative to increase the 

performance is to exploit data level parallelism. This technique improves performance in 

applications where highly repetitive operations need to be performed. It performs the same 

operation on multiple pieces of data. The first approach was vector processors and most 

modern implementations use short fixed size vectors in what is known as Single Instruction 

Multiple Data (SIMD) extensions.  

Present and next generation of mobile and embedded devices require having multimedia 

support to be competitive. The most popular technique at the microarchitecture level to 

deal with these requirements is to use SIMD extensions to the Instruction Set Architecture. 

It improves performance by processing vector operations in parallel. Their high compute 

power and hardware simplicity improve overall performance in an energy efficient manner. 

Furthermore, their replicated functional units and simple control mechanisms make them 

manageable to scaling to higher vector lengths. 

MIPS born as an academic research and also it has been the favorite architecture used to 

teach Computer Architecture Design. Other architectures as x86 or ARM are quite complex 

to understand for university students. 

Most popular microarchitectures today have at least a SIMD unit implementation, x86-64 

(MMX, SSE, AVX), PowerPC (AltiVec), ARM (Neon), MIPS (MDMX, MSA), and so on. This work 

focuses on the MIPS microarchitecture because it follows the RISC (Reduced Instruction Set 

Computer) philosophy quite closely, which is desirable since it simplifies implementation 

and it is easy to understand by students. 

First SIMD implementation for MIPS was MIPS Digital Media Extension (MDMX) that 

supported video, audio and graphics pixel processing by introducing two vectors formats of 

small integers. These vectors have a width of 64-bits, in the form of signed 16-bit or 8 

unsigned 8-bit integers.  MDMX is quite old, and it never reached production. Latest SIMD 

implementation on MIPS appeared in 2014 as an add-on of MIPS32/64 Release 5. It is called 

MIPS SIMD Architecture (MSA). It is designed to support 128-bit vectors of 8, 16, 32 and 64-

bit integer vectors; 16 and 32-bit fixed-point, or 32 and 64-bit floating-point elements.  



 

 
vii 

We have decided to implement the MSA ISA on an FPGA together with a MIPS-like 

implementation (soft-core). Since it is not intended for general purpose computing we take 

a MIPS32 core from opencores.org, upgraded it with the needed MIPS Release 6 

instructions, microarchitecture and control to use MSA coprocessor. We have created a 

MSA coprocessor, a testing bench and adapted some embedded micro benchmarks to test 

the MSA coprocessor.   
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1 Introduction 

1.1 Motivation 

One of the main objectives of computer architecture is to keep improving performance. 

Many different microarchitectural techniques have appeared to try to extract and exploit 

parallelism from sequential applications at run time. From the beginning of the age of circuit 

integration the number in each generation of transistors available per die has doubled 

approximately every two years (1). It means that computer architectures have more 

resources available on the design for the new microarchitectural techniques. 

The first approach to extract parallelism was trying to execute more than one instruction at 

the same time. This concept is call instruction-level parallelism (ILP).  ILP started by 

overlapping execution of instructions in time-sliced fashion (pipeline). It allows to have 

ideally as many instructions in execution as total pipeline stages. Implementation examples 

are Intel 80486 and MIPS R2000.  

Next approach was focused on executing multiple instruction at the same time. It was 

achieved by incrementing the number of functional units and dispatching multiple 

instructions per cycle. There are two techniques based on this concept.  Superscalar and 

Very Long Instruction Word (VLIW). The main difference between them is the complexity of 

their control unit. Superscalar decides at run time which instructions are dispatched 

together meanwhile VLIW requires explicitly encoded dispatch, controlled by the 

programmer. Early, superscalar implementation examples are Intel i960 and Motorola 

MC88100. Early VLIW examples are Intel i860 and Elbrus 2000. 

Important academic research in the 80s on restricted form of data flow (2), and other 

techniques like register renaming (that breaks false dependencies) and introducing a 

dynamic executing scheduler unit, facilitated out-of-order (OoO) execution. Main benefit of 

OoO comes from the possibility of avoiding idle processor due to instructions that are 

waiting for source operands to be calculated by older instructions. On the late 90s out-of-

order (OoO) microarchitectures became popular due to the huge performance 

improvement they provide. Examples of OoO designs are Intel Pentium Pro, MIPS R1000 

and DEC Alpha 21264. 

Pipelining, superscalar and OoO techniques do not require any programmer intervention to 

run. Nevertheless, they improve performance when they are applied. Another example of 

techniques that are hidden from the programmer or not expose to the Instruction Set 

Architecture (ISA) are branch prediction and cache hierarchy. This characteristic allows 

backward and forward application compatibility. On the other hand, VLIW exposes many 

microarchitectural features to the ISA than makes almost impossible (without recompiling) 

to use applications from one generation to another one. 
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One important challenge of OoO is finding enough parallelism. Performance results and 

trends are expressed in terms of issue width and windows size. Increasing the size of the 

instruction window is a straightforward solution to find parallelism at the instruction 

stream. A larger window is required for finding more independent instructions to take 

advantage of wider issue. The issue window logic is one of the primary contributors of 

complexity in typical out-of-order microarchitectures. The complexity and size of the 

structures of the microarchitecture necessary to implement OoO execution grows 

quadratically respect to the size of the issue window. Furthermore, each of the components 

shows a linear increase respect to the issue width (3). 

Designers decided to allow the execution of more than one thread (typically two) to 

increase parallelism. Instructions from different threads are independent by definition. This 

is called Multi-threading. It requires minimal changes at the architectural level to be 

implemented but the programmer must provide at least two threads to exploit this feature. 

Examples of this design are Intel Pentium IV HT and IBM Power5. 

At mid-2000, maximum single thread performance was achieved. Energy consumption and 

heat dissipation became very hard to manage because of power density (4). This is known 

as the power wall. Figure 1 shows several trends associated with Moore's law evolution. 

However, the number of transistors is still increasing. Designers started to put more than 

one core in the same die and Multicore processors appeared. One of the main benefits is 

that multicore allow higher performance at lower energy than single core processors with 

the same performance.  An important drawback of multicores is programmability. It is very 

difficult to create applications that can keep all cores busy. This problem is described by 

Amdahl’s Law (5). Examples of multicore architecture are AMD Athlon 64, Intel Core Duo 

and IBM Power5. 
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Figure 1: 35 years of microprocessor trend data (6) 

The number of cores has not stopped to increase. Nowadays, there are processors that have 

a huge number of cores. They are called many-cores and examples of this design are 

Calvium’s Thunder X (48 cores) (7) and Intel Xeon Phi (61 cores) (8). 

Pipeline, superscalar, and OoO microarchitectures techniques are focused on exploiting 

Instruction Level Parallelism (ILP). Another different approach to exploit parallelism is called 

Data-Level Parallelism (DLP). The idea behind DLP is using a single instruction to launch 

many data operations. Examples of vector architectures techniques that exploit DLP are 

vector architectures and what is known as Single Instruction Multiple Data (SIMD) 

extensions. 

As multimedia applications became popular, data to be processed increased and real-time 

processing graphics were needed as well. Computer architectures incorporated special 

hardware units to deal with these new multimedia issues. The designers introduced to 

personal computers (9) SIMD extensions to the ISA, an alternative to vector architectures 

for exploiting DLP. The main difference between them is that vector architectures process 

the elements of the vector operands in a pipelined fashion, one or a few per cycle, while 

SIMD instructions process all the elements of the operands at once. Moreover, vector 
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architecture supports a variable number of data operands per operation meanwhile SIMD 

has a fixed number of data operands.  

The integration of SIMD units on the processors has exposed a new challenge. The 

programmer (compiler) has to be capable to detect DLP and generate SIMD operations. 

Code optimizations play an important role in performance. 

Early SIMD implementations could perform integer instructions and elements were small 

(8-bit and 16-bit). SIMD extensions have been increasing its performance and functionality 

from generation to generation. SIMD width vector has increased from 64-bit to 512-bit. 

SIMD floating-point data types, single and double precision appeared (10).  

Nowadays, all processors have a multimedia extension (or SIMD unit), and since it can 

perform floating-point operations computer architectures avoid the implementation of FPU 

and these operations are performed by the SIMD unit as special case in which the data is 

considered as a one-dimensional vector. Additionally, it has to be considered that the x86-

64 ISA has more SIMD instructions than general-purpose instructions (11). 

1.2 Context of the project 

Most popular architectures1 currently have at least a SIMD unit implementation, x86-64 

(MMX, SSE, AVX), PowerPC (AltiVec), ARM (Neon), MIPS (MDMX, MSA), and so on. MIPS 

was born as an academic research and it is used to teach Computer Architecture Design. 

Other architectures as x86 or ARM are quite complex to understand for university students 

and also, their internal architecture has not been disclosed, thus many important 

implementation details are unknown. 

MIPS architecture follows RISC (Reduced Instruction Set Computer) philosophy. RISC means 

regular ISA, as well. A regular ISA allows to have simple instruction decode. Since no-

complex instructions are used by RISC, the microarchitecture2 implementation becomes 

simple by avoiding to use complex circuits to solve complex instructions or splitting complex 

instructions into microcode. MIPS original design was published in “Computer Architecture: 

A Quantitative Approach”.  Because of that, there are many MIPS-like implementations 

done by academic circles. This thesis is focused on the MIPS architecture because it follows 

the RISC philosophy to a greater extent than others architectures.  

The last SIMD implementation is called MIPS SIMD Architecture (MSA) and was launched 

the last year on April. At the moment the present work started there was not any public 

                                                           
1 Architecture describes the capabilities and programming model but not a particular implementation, 
sometimes refers as the ISA. 
2 Microarchitecture is the way a given instruction set architecture (ISA) is implemented on a processor. 
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soft-core implementation. HPCA (12) decided to implement MIPS SIMD Architecture on a 

FPGA.  

These statements were stablished because this SIMD unit is supposed to be part of a bigger 

project at IP-CIC is composed of many smaller projects like this (13). The idea is to provide 

a System on Chip (SoC) designed for education. It should be used to help in processor 

architecture lectures, develop university projects, etc. 

This project is based on an ISA compatible with MIPS32/64 Release 6. It is developed using 

Verilog which is a popular Hardware Description Language (HDL).  

To validate the implementation, we used a soft-core MIP32 implementation from 

opencores.org and some micro benchmarks for embedded architectures compiled with 

GCC. 

1.3 Objectives 

The main goal of this project is to create a SIMD unit based on three statements: 

 To provide a SIMD unit as a MIPS coprocessor. 

 To implement it as a soft-core optimize it for FPGAs. 

 To have clean code and well documented, in order to be easy to understand and 

modify. 

Secondary objectives are: 

 To provide a test bench tool to test and debug. 

 To provide some benchmarks to validate executions and measure performance. 
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2 State of the Art 

2.1 Origin 

From the beginning of microprocessors computer architects and designers have been 

fighting to keep improving performance from generation to generation. This has been 

possible by doubling the number of transistors approximately every two years. This 

continuous improvement is called Moore´s Law (1). The typical increase in transistor density 

enables designers to introduce new microarchitectural techniques to achieve higher 

performance levels. An example of this continuous improvement is the Tick-Tock model 

from Intel (14).  

2.2 Parallelism key of performance 

Nowadays, parallelism is used at multiple levels from the microarchitecture to the nodes, 

with energy and cost being the primary constrains. Parallelism can be classified in three 

types (15): 

 Instruction-Level Parallelism (ILP), is focused on executing more than one instruction 

in parallel or overlapping instruction execution. Some microarchitectural techniques 

that exploit ILP are pipelining, superscalar and out-of-order. A modest level of data-

level parallelism is achieved. 

 Data-Level Parallelism (DLP) focuses on operating multiple data items at the same 

time. Some microarchitectural techniques that exploit DLP are Vector Architectures, 

SIMD extensions and Graphic Processor Units (GPUs). 

 Thread-Level Parallelism (TLP) focuses on operating tasks of work (like threads3) in 

parallel that are independent. Some microarchitectural techniques that exploit TLP 

are hyper-threading, multicore and many-core. 

ILP exploits implicit parallel operations within a loop or straight-line code segment. TLP is 

focused on splitting program into independent tasks. Philosophies like divide-and conquer 

are used. TLP explicitly represented by the use of multiple threads of execution that are 

inherently parallel. TLP could be more cost-effective to exploit than ILP. DLP energy cost 

grows linear with respect to ILP. GPUs have a large energy efficiency advantage with respect 

to ILP or DLP. GPUs are designed to exploit high levels of data and thread level parallelism 

for performance rather than extracting ILP from a small number of threads (16).  

 

                                                           
3 Thread: process with own instructions, data and PC. It may be a subpart of a parallel program or it may be 
and independent program. 
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These previous schemes for hardware to provide the support to data-level parallelism and 

task-level parallelism are not at all new. Michael Flynn classified all computers in four 

groups (17): 

 Single instruction stream, single data stream (SISD). This classification is the classic 

uniprocessor. From the point of view of the programmer, instructions are executed 

sequentially. Although ILP can be exploited, for example with superscalar and 

speculative execution. 

 Single instruction stream, multiple data streams (SIMD). This classification describes 

computers that execute the same instruction on multiple processors simultaneously 

(but not necessarily concurrently) using different data streams. SIMD exploits DLP 

by applying the same operation to multiple items of data in parallel. There are three 

different architectures that exploit DLP: vector architectures, multimedia extensions 

and GPUs4. 

 Multiple instructions streams, single data stream (MISD). This is rarely used. Some 

computers implement it for reliability. Systems that require high fault tolerance like 

aircraft use heterogeneous systems that operate on the same data stream and 

results must match or alternately, the value result is chosen by a “two of three” vote. 

If all copies of the output are not identical, then an error has occurred (18). 

 Multiple instruction streams, multiple data streams (MIMD). This classification 

describes multicore computers. Each general processor (or core if they are in the 

same die) fetches its own instructions and operates on its own data. MIMD exploits 

mainly TLP. Examples are distributed systems and multicore processors. 

  

                                                           
4 Although GPUs like to call their model Single Instruction, Multiple Threads (SIMT) for Multiple Thread. 
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2.3 Vector Architectures 

Vector architectures take streams of data operands from memory (load), place them into 

large, register files, operate on them sequentially in those register files, and then send the 

result streams back to memory (store). It is done pretty much in the RISC style. Also, vector 

architectures implement a pipeline that stretched from memory, through the processor, 

and back to memory is very long and takes many clock cycles to fill, but once it is filled, the 

throughput was tremendous. Vector-length is variable and it is set using a vector-length 

register (VLR)5.  

The first two vector supercomputers appeared in the early 1970s. One was the Texas 

Instrument-ASC and the other was the STAR-100 developed by Control Data Corporation 

(CDC) (19). With the introduction of the CRAY-1 in 1976 vector supercomputing became 

successful. CRAY-1 was followed by the CRAY-2 and then by CRAY X-MP. The STAR-100 was 

followed by the Cyber 200 series and then ETA-10. 

Vector processors can greatly improve performance on certain workloads, notably 

numerical simulations and similar task. Vector processor do not benefit from executing 

scalar operations. Bandwidth and probably register space could be wasted. Nevertheless, 

performance should be similar to a scalar processor6.  

In the early 90s by the continuous increasing of the number of transistors that could be fit 

in a single die. Improvements in CMOS VLSI technology that allowed to break the 100MHz 

barrier. Microprocessors like DEC Alpha surpassed the cycle times of the fastest 

supercomputers of that age (19). The introduction of fast microprocessors substantially 

changed the supercomputer market. Due to their much higher volumes, microprocessors 

offer very low prices per processor. 

The idea of building supercomputers using many of these processors spread swiftly as a 

consequence of their cheaper cost and powerful. Nowadays supercomputers are made 

mainly using commodity parts (20). 

2.4 SIMD Multimedia extension 

Multimedia applications uses narrow data-types, typical widths of data are 8-bit and 16-bit, 

for instance, for graphic representation of each of the three primary colors plus 8 bits for 

transparency; or audio samples are also typically represented with 8 or 16 bits. SIMD 

extensions allow performing the same operation on a group of elements in parallel.  

Both, SIMD extensions and Vector processors operate using vectors. Vector processors can 

deal with vectors of variable size and SIMD extensions operates always in vectors of fixed 

                                                           
5 The exception is the STAR-100, which operated directly from memory. It did not have a vector register file. 
6 CRAY-I (1976) was capable of much higher scalar performance than any of its contemporaries (19). 
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size, it is usually called packed operand. The main difference between them is the execution 

model, SIMD extensions execute the whole packed operand (vector) in parallel (or mostly 

in parallel)7 whereas vector processors uses a pipe line execution that process element by 

element (or a few of them) in a RISC style . 

This difference in philosophy stems from the fact that the original reason for modern SIMD 

instruction sets was to speed up multimedia applications and games rather than scientific 

computing. Because of this implementation (and philosophical) difference, the term 

“vector” usually refers to vectors of many elements, while “SIMD” usually refers to vectors 

of a few elements (21). 

Figure 2 shows an example of an instruction for a SIMD operation, it is shown schematically 

how a sum of two vectors is done 𝐶 = 𝐴 + �⃗⃗�. The sum is performed element to element 

and is executed as a vector sum as well. In contrast, for vector architectures, which offers 

elegant instruction set that is intended to be the target of a vectorizing compiler, SIMD 

extensions have three major omissions: 

 Multimedia SIMD extensions fix the number of data operands in the opcode. 

 Multimedia SIMD usually does not support the sophisticated addressing modes of 

vector architectures, like stride accesses and gather-scatter accesses8. 

 Multimedia SIMD usually does not offer mask registers to support conditional 

execution of elements as in vector architectures9.  

 

B[2]B[3] B[1] B[0]

A[2] A[1] A[0]

+ + + +

A[3]

C[2]C[3] C[1] C[0]
 

Figure 2: Example of a SIMD parallel addition 

                                                           
7 It depends on the number and symmetric of lanes implemented. 
8 This limitation is being addressed with the newest SIMD extensions from Intel: AVX2 added support for 
gather and AVX-512 will include support for gather and scatter. 
9 AVX-512 instructions support 8 opmask registers. Seven of them provide conditional execution and 
efficient merging of data elements (62). 



 

 
20 

 

Usually the SIMD unit is composed of individual sub-units: a float-point unit, an 

integer/logical unit and a shuffle unit. Moreover, each unit is further divided into lanes. A 

lane is the minimum building block of a vector. A SIMD unit can be built just by putting next 

to each other multiple copies of the same lane. Integer lanes are almost identical to the ALU 

hardware and floating-point lanes are very similar to the FPU hardware. It is useful because 

is possible to reuse components. The drawback is that lanes have to be designed to support 

operating with different size, typically 8, 16, 32 and 64-bit. 

One advantage of SIMD is that typically the latency of each SIMD instruction is the same as 

the corresponding scalar operation. It is due to SIMD have an ALU (Lane) for each element. 

Moreover, power consumption on SIMD grows linearly because frequency and voltage do 

not need to change. Figure 3 shows the Dynamic power equation. By increasing the number 

of ALU or Lanes, capacitance increases too. 

 

 

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =∝ 𝐶𝐿𝑉
2𝑓 

Where 

P=power 

∝=activity factor 

C=capacitance 

V=voltage 

f=frequency 

Figure 3: Dynamic Power 

2.5 Graphics Processing Units 

The GPU is a multiprocessor composed of multithreaded SIMD processors10. Multithreaded 

SIMD processors are similar to a Vector Processors, but they have many parallel functional 

units instead of a few that are deeply pipelined, as vector processors have. SIMD processors 

are full processors with separate PCs and are programmed using threads. Each SIMD 

processor is composed of a set of lanes. These lanes are quite similar to the lanes used by 

SIMD multimedia extensions. 

The multiple SIMD processors in a GPU act as independent MIMD cores, just as many vector 

computers have multiple vector processors. The main difference between GPU and vector 

processors is multithreading, which is fundamental to GPUs and is missing from most vector 

processors. Nevertheless, this is not a rule. There are Vector processors that exploit 

multithreading by merging ILP and DLP (22). Multithreading in GPUs is used to hide DRAM 

latency (15). 

                                                           
10 SIMD processor: a processor focused on perform SIMD operations, also called stream processors. 
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GPUs introduced a new parallel execution model called Single Instruction, Multiple Thread 

(SIMT) (23). Here multithreading is simulated by SIMD processors. Each processor has 

multiple threads (called work-items), which execute in lock-step, and are analogous to SIMD 

lanes. The main benefit from SIMT is to reduce instruction fetching overhead (24). 

2.6 SIMD History 

Nowadays almost every processor includes a SIMD unit, common examples of this are 

computers, tablets, smartphones, and videogames. Before the mid-90s personal computers 

(PCs) became popular, where Intel was one of the pioneers to introduce SIMD technology 

to PCs with this, when Intel tried to increase the performance of multimedia applications. 

Table 1 shows a brief summary (not exhaustive) of the last 20 years of SIMD 

implementations. 

Year Description 

1994 Hewlett-Packard introduced the “Multimedia Acceleration eXtensions” 
(MAX). It was 64-bit wide (25). 

1995 Sun Microsystems introduced the “Visual Instruction Set” (VIS). It was used 
by SPARC processors. It was 64-bit wide (26). 

1996 Intel launched the MMX. This unit was not so popular due to its technical 
limitations. The original name was supposed to be “Sub-word Parallelism” but 
marketing team decided to change it. MMX shared registers with the FPU. It 
was 64-bit wide. (9). 

1996 MIPS Technologies developed its own SIMD implementation. It was called 
“MIPS Digital Media eXtension” (MDMX). It was pretended to be launched as 
coprocessor of MIPS-V instruction set. Unfortunately, MIPS-V was never 
launched neither MDMX. It was 64-bit wide and share registers with the FPU 
(27). 

1997 AIM (Apple, IBM and Motorola) introduced the AltiVec instruction set on its 
G3 processors. It was 128-bit wide and supported SIMD floating-point 
operations (28). 

1999 Intel developed a new SIMD implementation called “Streaming SIMD 
Extension” (SSE). It doubled the size of the register respect MMX from 64-bit 
to 128-bit wide. Also SSE introduced support to perform floating-point 
operations of single-precision. SSE were more popular than MMX (10). 

2000 AMD launched its own SIMD implementation called 3DNow! that was similar 
to SSE. Because AMD market was relatively small and 3DNow! was 
implemented only in AMD processors, 3DNow! was not popular. 3DNow! 
shared registers with the FPU. 

2002 Intel released the next generation of SSE (SSE2). It fixed many problems with 
previous implementation and introduced support to perform double-
precision floating-point operations. It was launched with the Pentium IV and 
became very popular (29). 
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Year Description 

2004 Intel launched SSE3. It introduced 13 new instructions over SSE2 which are 
primarily designed to improve thread synchronization and specific application 
areas such as media and gaming (29). 

2006 Intel launched SSE4. It introduced 54 new instructions over SSE3. It 
introduced support to perform floating-point dot products (30). 

2008 Intel announced a new SIMD set instruction for x86-64 architecture. It was 
called “Advanced Vector Extension” (AVX). One of the main improvements 
was to double the size of the SIMD register from 128-bits to 256-bits, support 
up to four operand instruction and fused operations. (31). 

2011 Intel launched Sandy Bridge microarchitecture under the Core brand. Sandy 
Bridge was the first microarchitecture that implements AVX (32). 

2013 Intel launched Haswell microarchitecture which includes the second 
generation of AVX (AVX2). (14) 

2015 This year AVX-512 (AVX3) will be launched with Knights Landing Xeon Phi 
processor. AVX3 doubles the size of the registers from 256-bits to 512-bits 
(33). 

Table 1: Summary of SIMD implementations on PC 
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3 MIPS Architecture 

3.1 Brief History of MIPS Company 

A group of researchers from Stanford University led by John L. Hennessy in the early 1980s 

created the first MIPS (Microprocessor without Interlocked Pipeline Stages) processor (34). 

They believed that using Reduced Instruction Set Computing (RISC), combined with 

excellent compilers and hardware that exploit pipelining to execute these instructions, 

could produce a faster processor using less die area. These were such success that MIPS 

Computer Systems, Inc. was formed in 1984 to commercialize the MIPS architecture. 

On 1992 Silicon Graphics Inc. (SGI) acquired the company and rename it as MIPS 

Technologies, Inc. (35). SGI spun MIPS out on June 20th, 2000 by distributing all its interest 

as stock dividend to the stockholders (36). 

On 8 February 2013 MIPS Technologies, Inc. was acquired by Imagination Technologies (37). 

Over the years MIPS has been focused on embedded markets such as Windows CE devices, 

routers, video game consoles (Nintendo 64, PlayStation). 

3.2 History of the MIPS ISA 

From the first proposal ISA presented by John L. Hennessy research team. MIPS has been 

evolving introducing new features generation by generation. A brief summary of the 

evolution of MIPS processors is presented below. Each new MIPS generation is a superset 

revision from the previous one. Additionally, newer versions are fully backward compatible. 

MIPS I 

The first MIPS design was introduced in 1985. It was designed with 32 general purpose 

registers of 32 bits each. It had a 5 stages pipeline. Floating point on MIPS was originally 

done in a separate chip called coprocessor 1 also called the Floating Point Accelerator (FPA). 

It had 32 single-precision (32-bit) floating-point registers. Double precision was 

implemented by using pairs of single precision registers to hold operands. All MIPS chips 

use the IEEE 754 floating-point standard, both the 32-bit and the 64-bit versions. (38). 

MIPS II 

It was introduced in 1990. It is a superset revision from the previous one. 

MIPS III 

It was introduced in 1992. It increases the width of the registers and integer units up to 64-

bits. It introduced square root floating-point instruction. It is a superset revision from the 

previous one. 
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MIPS IV 

It was introduced in 1994. It introduced floating-point fused operations. 

MIPS V 

It was announced in 1996 but it was never launched to the market. A major improvement 

was the MIPS Digital Media Extension (MDMX) which was a multimedia extension designed 

to improve the performance of 3D graphics applications. MDMX was one of the first SIMD 

implementations by MIPS. 

3.3 Current MIPS ISA 

After departure of MIPS Technologies from Silicon Graphics, architecture definition was 

changed to refocus on the embedded market. All releases from 1 to 6 have both 32 and 64-

bit versions. MIPS64 versions are supersets of the corresponding 32-bit versions. It means 

that MIPS32 ISA is part of the MIPS64 ISA. MIPS32 instructions are sign extended to work in 

MIPS64 registers. Additionally, newer versions are fully backwards compatible. For 

instance, a processor that implements MIPS64 Release 6 ISA can execute instructions from 

MIPS32 Release 6 ISA, but not vice versa. In fact, it can execute any previous MIPS32 and 

MIPS64 release. 

MIPS32 and MIPS64 release 1 

Introduced in 1999. It is mostly based on MIPS II but it borrows some features from MIPS 

III, MIPS IV and MIPS V. 

MIPS32 and MIPS3264 release 2 

Introduced in 2002. It is a superset from the previous one and several improvements were 

made. Some of them are support for 64-bit coprocessor for 32-bit and 64-bits CPU, support 

for Virtual and Physical Memory, support for larger TLB pages, and support for external 

interrupts controller. 

MIPS32 and MIPS64 release 3 

Introduced in 2010. It also introduces microMIPS32 and microMIPS64 instruction sets which 

instructions of 16 and 32-bits respectively. The main idea of microMIPS32 and microMIPS64 

is to have all the functionality of MIPS32 and MIPS64 with smaller code sizes. It introduced 

support for non-executable and write-only virtual pages and for certain IEEE-754-2008 FPU 

behaviors. 

MIPS32 and MIPS64 release 4 

This name was skipped for commercial issues. Number 4 in Asia is considered unlucky. 
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MIPS32 and MIPS64 release 5 

Introduced in 2013. Here optional components appeared, e.g. virtualization, 

multithreading, multimedia and DSP.  

MIPS32 and MIPS64 release 6 

Introduced in 2014. One of the most important changes is that the instruction set has been 

simplified by removing infrequently used instructions and rearranging instruction encoding.  

For example, unaligned memory accesses are now directly supported, without requiring 

special instructions. Figure 4 shows the evolution of MIPS architecture from the original 

MIPS I to MIPS32/64 Release 6. Also optional modules are shown.  

Instructions that were removed from previous versions than Releases 6, still available and 

they can be implemented to allow backward compatibility. Nevertheless, they are clearly 

marked as obsolete and programmers should avoid using these instructions. 
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Figure 4: MIPS32/64 Releases and optional modules (39) 

 

3.4 Optional Components 

MIPS architecture is targeted to plenty of markets, in order to fill all possible requirements. 

Imagination Technologies© provides some optional components fully compatible with 

MIPS32, MIPS64, microMIPS32 and microMIPS64 ISA from release 5 and higher. Figure 4 

shows the MIPS evolution from the original MIPS I to the MIPS32/64 Release 6 Figure 5 

shows optional ISA modules compatible with MIPS32/64 Release 6. They are used to 

improve some specific applications. 
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Figure 5: Optional components supported by MIPS32 and MIP64 (40) 

 

3.5 Brief description of the optional components available on Release 6 

The following briefly describes the modules compatible with MIPS Release 6 (41). 

MCU 

Provides enhanced handling of memory-mapped I/O registers and lower interrupt latencies. 

This is intended to extend the interrupt controller support, typically required in 

microcontroller system designs. 

SmartMIPS 

It is an instruction set extension designed to improve the performance and reduce memory 

consumption of MIPS-based smart card or smart objects systems. These are very lower-

power CPUs whose biggest task is encryption/decryption.  

MIPS MT 

The MIPS MT provides the micro-architectural support needed to perform multithreading. 

This includes support up to two virtual processors and lightweight contexts.  
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MIPS DSP11 

The MIPS DSP provides enhanced performance of signal-processing applications. Roughly it 

provides DSP functionality in MIPS processor cores. 

MIPS VZE 

The MIPS Virtualization Module provides hardware acceleration of virtualization of 

Operating Systems. 

MIPS MSA 

The MIPS SIMD Architecture provides high performance parallel processing of vector 

operations through the use of 128-bit wide vector registers. MIPS MSA is described in 

chapter 4. It substitutes MIPS Digital Media Extension (MDMX). 

  

                                                           
11 MSA is recommended substitute. DPS is not allowed if MSA is implemented. USE of DPS Module is strongly 
discouraged from Release 6 onwards. 
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4 The MIPS® SIMD Architecture module  

Common operations that are used in multimedia processing which can be vectorized as 

SIMD operations include: 

 Addition and subtraction 

 Multiply 

 Logical and arithmetical shift operations 

 Logical operations (AND, OR, Nor, XOR, etc.) 

 Load and Store 

 Fused operations like Multiply-Add, dot product 

MIPS SIMD Architecture (MSA) module was implemented with strict adherence to the RISC 

design principles pioneered by MIPS. It is a simple, yet very efficient instruction set carefully 

selected with a hardware implementation that is efficient in terms of speed, area and power 

consumption.  

The MSA introduces 186 new instructions that operate on vector registers of 128-bit wide. 

It supports four formats: 

Data Format Characteristics Format Abbreviation 

Byte 16 elements of 8-bit wide .B 

Halfword 8 elements of 16-bit wide .H 

Word 4 elements of 32-bit wide .W 

Doubleword 2 elements of 64-bit wide .D 

Vector Whole 128-bit wide vector .V 
Table 2: Supported formats by MSA 

Figure 6 shows the distribution and layout representation of elements for all four data 

formats. MSA vectors are stored in memory starting from the least significant bit at the 

lower byte address. The byte order can follow big or little endian conventions. 
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Figure 6: MSA formats 

 

The 64 least significant bits of MSA are shared with the floating-point unit (FPU). MSA and 

FPU cannot be present, at the same time, unless the FPU has 64-bit floating-point registers. 

Since MSA floating-point implementation is compliant with the IEEE Standard for Floating-

Point Arithmetic 754™ 2008 (42) and supports single and double precision. Moreover, MIPS 

ISA indicates that FPU and MSA registers are mapped together. It means that MSA data is 

destroyed when FPU instructions are executed and vice versa.  

Programmer is responsible of saving registers if FPU and MSA instructions are mixed (kind 

of context switch). An option would be to avoid to use FPU instructions and use MSA FPU 

instructions using the start address of the FPU data as a start address of the vector. 

Remaining elements will have trash-data. A better option is to vectorize your code (see GCC 

section). 

4.1 Instruction Decoding and Formats 

The MSA instructions are encoded in 32 bits following RISC principles. These instructions 

are well formed according to RISC. Many bit-ranges are common. For example, MSA 
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identifier, MSA opcode and register addresses (WS, WD, and WT). Table 3 shows all 

decoding formats. This regularity makes easier to decode it. Instructions are distributed in 

12 groups according to the number of operands, operation and behavior. All MSA 

instructions except branches use 40 minor opcodes in MSA major opcode 0x1E. MSA branch 

instructions are encoded in the COP1 opcode 0x11. 

 I8 8-bit immediate value. 10 instructions. 

 I5 5-bit immediate value. 11 instructions. 

 BIT Immediate bit index. 12 instructions. 

 I10 10-bit immediate value. 1 instruction. 

 3R 3-register operations. 63 instructions. 

 ELM Immediate element index. 9 instructions. 

 3RF 3-register floating-point or fixed-point operations. 41 instructions. 

 VEC Bit wise operations over whole vector. 7 instructions. 

 MI10 Memory operations, immediate offset 10-bit. 2 instructions. 

 2R 2-register operations. 4 instructions. 

 2RF 2-register floating-point or fixed-point operations. 16 instructions. 

 Branch Opcode is shared with COP1 instructions. Branches are taken at element 

level, immediate offset 16-bit. 10 instructions. 

 

Mnemonic Instruction layout Type 
INST.df12 MSA OP operation df wt ws wd opcode 3R 

INST.df MSA OP operation df wt ws wd opcode 3RF 

INST.df MSA OP df i8 ws wd opcode I8 

INST.df MSA OP operation df u5 ws wd opcode I5 

INST.df MSA OP operation df s10 wd opcode I10 

INST.df MSA OP operation df/m ws wd opcode BIT 

INST.df MSA OP operation df/n ws wd opcode ELM 

INST.V13 MSA OP operation wt ws wd opcode VEC 

INST.df MSA OP s10 rs wd opcode MI10 

INST.df MSA OP operation df ws wd opcode 2R 

INST.df MSA OP operation df ws wd opcode 2RF 

INST.V COP1 operation df wt s16 COP1 

Table 3: Decode of instructions 

 

 

                                                           
12 df - supported data format abbreviation, see Table 2 
13 V – vector variable of type V 
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Where:  

MSA OP: Major Opcode space, this field has a constant binary value of 011110 and 

identify MSA instructions. 

COP1: Major Opcode space, this field has a constant binary value of 010001 and 

identify coprocessor 1 instructions. Some of them are overridden by MSA. 

ws: 5-bit MSA register address of source operand 1, e.g. $w0, $w1, …, $w31 

wt: 5-bit MSA register address of source operand 2, e.g. $w0, $w1, …, $w31 

wd: 5-bit MSA register address of source operand 3 and MSA register address 

destination, e.g. $w0, $w1, …, $w31 

rs: 5-bit general purpose register (GPRs) address, e.g. $0, $1, …, $31 

opcode: Minor opcode space, this field identify instructions by type like 2R, 3R, 

ELM and so on. 

df: destination data format, which could be a byte, halfword, word, doubleword or 

vector. See Table 2.  

df/n: vector register element of index n, where n is a valid index value for elements 

of data format df. See Figure 7. 

df/m: Immediate value valid as a bit index for the data format df. See Figure 8. 

u5: Immediate unsigned value of 5-bit 

i8: Immediate value of 8-bit 

s10: Immediate signed value of 10-bit 

s16: Immediate signed value of 16-bit 

operation: Instruction name. 
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Figure 7: Data format and element index field encoding 

 

Figure 8: Data format and bit index field encoding 

4.2 GCC support 

Imagination Technologies (which is the owner of MIPS Technologies), provides some 

developer tools. One of this tools is called Codescape (43) which includes GCC that supports 

all MIPS configurations including a library to support MSA instructions. Simple C 

programming allows portable codes in a short development time. 

MSA toolchain includes 

 Built-in intrinsic and data-types for all vector formats and instructions available from 

C/C++ programming 

 Support from common operators (+,-,*) that can be used on vector data-types. 

 Complete replacement for hand-coded assembly 

 Compiler optimization by auto vectorization 

The MIPS SIMD Architecture is designed to meet multimedia requirements and other 

compute-intensive applications. Video compression has a typical pixel depth of 8-bits or 10-

bits; further mathematical operations can take intermediate results to 16-bits or 32-bits. 

Therefore using an implementation of a typical 128-bit vector register size SIMD processor, 
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it is possible to make a four to eight time reduction to mathematical and data load and store 

operations (44). 

The use of built-in data types and intrinsics makes C code quickly portable across all MSA 

core implementations.14 Moreover, it also indirectly instructs the compiler to make the best 

use of the SIMD instructions and architecture. For each instruction, the compiler provides 

a C-style built-in to be used in conjunction with vector-type data structures in order to 

target MSA vector registers. The preferred coding style is to use regular C arithmetic 

operators on vector data types and fall back to built-ins for complex MSA instructions which 

the compiler is unable to relate to vectorized C code (45). 

To enable MSA features when compiling, the command line option –mmsa has to be used. 

The command line option –mfp64 must be used in conjunction with –mmsa. Moreover, to 

enable auto vectorization the command line option –O2 could be used. 

$ mips-mti-elf-gcc –O2 –o test test.c –mmsa –mfp64 –T script 
Figure 9: GCC compilation using MSA 

It is required to specify a linker script (.ld files) with the –T option to build applications for 

bare-metal15 targets, the -T option is required when linking to avoid references to undefined 

symbols (46). 

ENTRY(main) 

PROVIDE (__stack = 0); 

SECTIONS 

{ 

    . = 0x1fc00000; 

    .text : {  

  *(Inicio) 

  *(.text);  

 } 

    . = 0x1fc80000; 

    .rodata : { *(.rodata) }  

    .data : { *(.data) } 

    .bss : { *(.bss) } 

} 
Figure 10: Linker script example. 

Figure 11 shows a C code example that perform the addition of two integer arrays. The 

arrays are added in groups of 4 elements. Vector type variables are declared using the 

vector extension provided by GCC.  

                                                           
14 MIPS32, MIPS64, microMIPS32 and microMIPS64 for Release 5 and higher. 
15 Applications that run in computers without operating system 
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typedef int v4i32 __attribute__ ((vector_size(16))); 

#define N 16 

/* Pointers to the input arrays */ 

int *input1, *input2 ;  

/* Pointer to the output array to store addition */ 

int *output;  

/* Vectors of type word */ 

v4i32 a, b, c;  

int i; 

/* Loop unrolled 4x */ 

for (i = 0; i < N; i += 4)  

{ 

 /* Load 4 elements of array input1 */ 

 a = *((v4i32 *)(input1 + i));  

 /* Load 4 elements of array input2 */ 

 b = *((v4i32 *)(input2 + i));  

 /* Vector addition */ 

 c = a + b;  

 /* Store addition of 4 elements */ 

 *((v4i32 *)output + i) = c;  

} 
Figure 11: Example for addition of two integer arrays 
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5 Tools and resources 

5.1 Verilog 

Verilog is a hardware description language (HDL). The standard includes support for 

modeling hardware at the behavioral, register transfer level (RTL), and gate-level 

abstraction levels, and for writing test benches. Verilog syntax is similar to the C 

programming language and Verilog codes are shorter than VHDL codes (47). 

5.2 Quartus II 

The Altera Quartus II is a design software produced and provided by Altera. It is 

multiplatform and provides analysis and synthesis of Verilog and VHDL hardware 

description languages. The Quartus II software includes solutions for all phases of FPGA 

design. We used 14.1 web edition version. It is a free version that only provides compilation 

and programing for a limited number of Altera devices. Cyclone FPGA family is fully 

supported. Some advanced features like LogicLock Region and Power Analysis are only 

available in the Subscription Edition that requires a subscription license.  

Web edition version of Quartus II also includes a ModelSim starter edition version which is 

free. ModelSim is a source-level multi-language HDL simulation environment developed by 

Mentor Graphics. ModelSim supports VHDL, Verilog and SystemC HDL. We used ModelSim 

version 10.3c to simulate and run test benches. 

5.3 DE2-115 board 

Since this project is oriented to generate a soft-core implementation, we selected a popular 

educational FPGA board. The DE2-115 board is equipped with a Cyclone EP4CE115 FPGA 

with 114,480 logical elements (48). These are a summary of the main features of the DE2-

115 board: 

 114,480 logic elements (LEs) 

 266 Embedded 18x18 multipliers 

 128 MB SDRAM 

 2 MB SRAM 

 8 MB Flash 

 528 User I/Os 

 Serial port 

 Three 50MHz oscillators 

 



 

 
37 

 

6 Basic components 

There are basic circuits that are used in the implementation like adders, multipliers and 

multiplexors. We are going to describe how they were selected. 

6.1 Adder 

An adder is a digital circuit that produces the arithmetic sum of two binary numbers. The 

majority of the adders use the full-adder as minimum component. A full adder is a 

combinational circuit that performs the addition of three bits. Figure 12 shows the 

implementation of a full adder.  Figure 13 shows the block representation of a full adder. 

We implemented three types of adders and evaluated their performance and resources 

used in our FPGA. The implementation of 4-bit adders is explained next. 

 

 

Figure 12: One-bit full adder implementation 



 

 
38 

 

 

Figure 13: One-bit full adder block 

6.1.1 Ripple Carry Adder 

The ripple carry adder consists of N full adders to add N-bit numbers. Full adders are 

connected in a cascade. It means that from the second full adder, carry input of every full 

adder is the carry output of its previous full adder. In the ripple carry adder, the result is 

known after the carry signal has rippled through the whole adder. As a result, the sum will 

be valid after a considerable delay time. Figure 14 shows an implementation of a 4-bit ripple 

carry adder. 

 

Figure 14: 4-bit ripple carry adder 
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6.1.2 Carry Look-ahead Adder 

The carry look-ahead adder reduces the carry delay time by calculating the carry signals in 

advance, based on the input signals. Figure 15 shows a 4-bit carry look-ahead adder 

implementation. The carry logic block is implemented using boolean equations shown in 

Figure 16. The disadvantage of the carry look-ahead adder is that the carry logic block 

becomes complicated as the size of the adder grows. The carry look-ahead adder usually is 

implemented as 4-bit or 8-bit blocks. These adder blocks are connected like full adders in 

ripple carry adder are connected the same fashion. 

 

Figure 15: 4-bit carry look-ahead adder 

 

Figure 16: Boolean equations used in 4-bit carry look-ahead adder 
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6.1.3 Kogge-Stone Adder 

The Kogge-stone adder is a parallel prefix form of carry look-ahead adder. It is the fastest 

adder with focus on design time and is the common choice for high performance adders in 

industry (49). The drawback of the Kogge-Stone adder is that it occupies a large silicon area. 

Figure 17 shows a 4-bit Kogge-stone adder. It is composed by carry operators as shown in 

Figure 18. Boolean equations that are used to implement the carry operators and calculate 

the final result “S” are show in Figure 19. 

(P3,G3) (P2,G2) (P1,G1) (P0,G0)

B3 A3 B2 A2 B1 A1 B0 A0

(Cp4,Cg4) (Cp2,Cg2) (Cp0,Cg0) (P0,G0)  

Figure 17: 4-bit Kogge-Stone Adder 
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(CP0,CG0)

(Pi,Gi) (Pj,Gj)

 

Figure 18: Carry operator 

 

𝐶𝑃0 = 𝑃𝑖𝑎𝑛𝑑𝑃𝑗  

 

𝐶𝐺0 = (𝑃𝑗𝑎𝑛𝑑𝐺𝑗)𝑜𝑟𝐺𝑖 

 

𝐶𝑖−1 = (𝑃𝑖𝑎𝑛𝑑𝐶𝑖𝑛)𝑜𝑟𝐺𝑖 

 

𝑆𝑖 = 𝑃𝑖𝑥𝑜𝑟𝐶𝑖−1 

 

Figure 19: Boolean equations involved in Kogge-Stone 
adder 

6.1.4 Adder evaluation 

We implemented in the Cyclone IV FPGA the adders using a 16-bit width. Then these 16-bit 

adders were used as basic adder blocks and 32-bit of the lower and faster 16-bit version 

adders were implemented. Finally, the faster adder, the Kogge-Stone adder was expanded 

up to 64-bit. An interesting observation is that the adder used by Quartus II which is called 

Quartus II adder is even faster than the Kogge-Stone implementation.  

This might happen because Kogge-Stone adder is losing performance by the 16-bit block 

distribution. Also Quartus II selects the best adder algorithm depending on the width. 

Examples of other adder algorithms are Carry Select Adders and combinational adders (50). 

Finally, it has been decided to use the adder provider by Quartus II because it has similar 

performance and requires less Logical Elements (LEs) than the Kogge-Stone adder. Future 

implementations should have Kogge-Stone adder implemented with the appropriated 

width and not using small blocks.   

 

Adder Width Number of LEs Fmax (MHz) 

Ripple Carry Adder 16 56 223 

Carry Look-Ahead Adder 16 54 215 

Kogge-Stone Adder 16 70 247 

Ripple Carry Adder 32 109 109 

Kogge-Stone Adder 32 212 211 

Kogge-Stone Adder 64 423 159 

Quartus II Adder 64 192 167 
Table 4: Adder performance evaluation 
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6.2 Multiplier 

As it has been said above, at the beginning this multimedia extension is oriented to be 

implemented in FPGA. Therefore, we are using the DSP blocks included in the Cyclone IV 

FPGA. Small width values like byte (8-bit) and halfword (16-bit) are executed directly on one 

DSP block. DSP blocks in Cyclone IV FPGA are 18-bit width (51). For large integers like word 

(32-bit) and doubleword (64-bit) we use the Karatsuba Algorithm. 

The Karatsuba multiplication algorithm is an efficient way to build high bit width integer 

multiplication, suitable for conserving DSP blocks in return for additional latency and cell 

area. Karatsuba algorithm is based on a formula for multiplying two linear polynomials 

which uses only 3 multiplications and 4 additions (52). The formula of the Karatsuba 

algorithm is: 

(𝑓1𝑥
𝑚 + 𝑓0)(𝑔1𝑥

𝑚 + 𝑔0) = ℎ2𝑥
2𝑚 + ℎ1𝑥

𝑚 + ℎ0 

Figure 20: formula of Karatsuba algorithm 

𝑓0 ,  𝑓1 ,  𝑔0 and 𝑔1 are m-bit polynomials. The polynomials ℎ0, ℎ1  and ℎ2 are computed by 

applying the Karatsuba algorithm to the polynomials  𝑓0 ,  𝑓1 ,  𝑔0 and 𝑔1 as single coefficients 

and adding coefficients of common powers of 𝑥 together. The circuit to perform Karatsuba 

Algorithm is shown in Figure 21. 

 

Figure 21: The circuit to perform Karatsuba multiplication 

The “Overlap circuit” adds common powers of x in the three generated products. For 

instance if n=8, then the input polynomials have a degree at most 7, for each of the 

polynomials  𝑓0 ,  𝑓1 ,  𝑔0 and 𝑔1. Figure 22 shows the effect of the overlap module. 

Coefficients to be added together are shown in the same columns. 
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Figure 22: The overlap circuit for the 8-bit Karatsuba multiplier 

Example  

Let A=197 and B=114 values of 8-bit width. We can split these numbers into their higher 

and lower 4-bits using 16 as a base. Figure 23 shows a numerical example of the 

multiplication of 197 by 144 based on the data flow and intermediate results given by the 

circuit shown in Figure 21. Overlap row is two parallel adders of a few bits each one, a show 

in Figure 22. 

 

Operands 

𝐴 = 197 𝐵 = 84 

𝐴𝐵 = (𝑓1𝑥 + 𝑓0)(𝑔1𝑥 + 𝑔0) 

𝐴 = (𝑓1𝑥 + 𝑓0) 𝐵 = (𝑔1𝑥 + 𝑔0) 

Split 

(x=16) 
𝑓1 = 12 𝑓0 = 5 𝑔1 = 7 𝑔0 = 2 

Operations 12x7=84 

12x5=17 7x2=9 

5x2=10 
17x9=153 

153-10=143 

143-84=59 

 ℎ2 = 84 ℎ1 = 59 ℎ0 = 10 

Overlap 
𝐴𝐵 = ℎ2𝑥

2 + ℎ1𝑥 + ℎ0 

𝐴𝐵 = 84(162) + 59(16) + 10 

Result 𝐴𝐵 = 22458 

Figure 23: Numerical example of Karatsuba multiplier using base 16 
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6.3 Divider 

Divider is one of the most expensive resources unit to implement. It uses substantial area 

(50). Divider implementation is not part of this thesis and has been left for future 

implementation. In order to save area we will use the Floating Point lanes to perform 

integer division (21). Current implementation does not provide Floating Point SIMD 

operations but MSA ISA does. As temporary solution the lpm_divide megafunction provided 

by Altera has been used considering a 4-stage pipeline. 

A low area, low performance alternative to the lpm_divide megafunction is using the 

elementary school algorithm of processing the number from the most significant bit to the 

less significant bit. When difference is negative, the next quotient bit is 0 and workspace is 

untouched. When the difference is zero or positive, the next quotient bit is set to one and 

workspace is overwritten with the difference value. The quotient bits accumulate in the 

numerator register, and the remainder accumulates in the workspace as the clock 

progressed. The ready signal indicates completion. Figure 24 shows this algorithm. 

 

Figure 24: Alternative division algorithm 

This alternative divider implementation requires as many clock ticks as width-bits source 

operands. In other words, a division of 64-bits requires 64 clock ticks. Dividers can be chosen 

by modifying parameters at configuration file of project. 
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6.4 Multiplexer 

A multiplexer is a logical circuit used to select one of some input signals and forward the 

selected one to an output signal. Figure 25 shows a block representation of a 4-to 1 

multiplexer. 

00

01

10

11

[127:0]

Sel

out

[1
:0

]

[127:0]

[127:0]

[127:0]

A

B

C

D

 

Figure 25: Multiplexer 4-to 1 of 128-bit width 

𝑜𝑢𝑡 = (𝐴𝑆𝑒𝑙1̅̅ ̅̅ ̅̅ 𝑆𝑒𝑙0̅̅ ̅̅ ̅̅ ) + (𝐵𝑆𝑒𝑙1̅̅ ̅̅ ̅̅ 𝑆𝑒𝑙0) + (𝐶𝑆𝑒𝑙1𝑆𝑒𝑙0̅̅ ̅̅ ̅̅ ) + (𝐷𝑆𝑒𝑙1𝑆𝑒𝑙0) 

Figure 26: Boolean equation for a 4-to 1 multiplexer 

We have decided to code big multiplexers (128-bit width) using the boolean equation 

shown in Figure 26 because Quartus does not implement always the shortest circuit if a 

case statement is used.  

6.5 Saturated Arithmetic 

One extremely useful feature of MIPS SIMD Architecture technology is its support for 

saturated integer arithmetic. In saturated integer arithmetic, computational results are 

automatically clipped by the processor to prevent overflow and underflow conditions. This 

differs from normal wraparound integer arithmetic where an overflow or underflow result 

is retained. Saturated arithmetic is handy when working with pixel values since it eliminates 

the need to explicitly check is the result of each pixel calculation for an overflow or 

underflow condition. MIPS SIMD Architecture technology includes instructions that 

perform saturated arithmetic using 8-bit, 16-bit, 32-bit and 64-bit integers, all signed and 

unsigned. 

Figure 27 shows an example of 8-bit signed integer subtraction using wraparound and 

saturated arithmetic. An overflow condition occurs if the two 8-bit signed integers are 

subtracted using wraparound arithmetic.  With saturated arithmetic, however, the result is 

clipped to the lowest possible 8-bit signed integer value. MIPS SIMD Architecture also 
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supports saturated integer addition, as shown in Figure 28. Table 5 summarizes the 

saturated arithmetic range limits for all possible integer sizes and sign types. 

Integer Type Lower Limit Upper Limit 
8-bit signed -128 (0x80) +127 (0x7F) 

8-bit unsigned 0 +255 (0xFF) 

16-bit signed -32768 (0x8000) +32767 (0x7FFF) 

16-bit unsigned 0 +65535 (0xFFFF) 

32-bit signed -21447483648 (0x80000000) +2147483647 (0x7FFFFFFF) 

32-bit unsigned 0 +4294967295 (0xFFFFFFFF) 

64-bit signed -9.2233E+18 (0x8000000000000000)16 +9.2233E+18 (0x7FFFFFFFFFFFFFFF)17 

64-bit unsigned 0 +1.8446E+19 (0xFFFFFFFFFFFFFFFF)18  
Table 5: Range Limits for Saturated Arithmetic 

 

 

-110 (0x92)

90 (0x5A)

-110 (0x92)

90 (0x5A)

56 (0x38) -128 (0x80)

Wraparound Saturated

 

Figure 27: 8-bit signed integer subtraction using wraparound and saturated arithmetic 

 

150 (0x96)

135 (0x87)

150 (0x96)

135 (0x87)

29 (0x1D) 255 (0xFF)

Wraparound Saturated

 

Figure 28: 8-bit unsigned integer addition using wraparound and saturated arithmetic 

                                                           
16 It is −9,223,372,036,854,775,808 
17 It is 9,223,372,036,854,775,807 
18 It is 18,446,744,073,709,551,615 
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7 The MIPS SIMD Architecture Instruction Set 

The MIPS SIMD Architecture (MSA) consists of integer, fixed-point, and floating-point 

instructions, all encoded in the MSA major opcode space (31-26 bit). The semantics of most 

MSA instructions are defined at the granularity of vector elements. A few instructions have 

semantics that consider the whole SIMD operand as a bit-vector, e.g. bitwise logical 

operations. 

For certain instructions, the source operand could be an immediate value or a specific 

vector element selected by an immediate index. The immediate or vector element is being 

used as a fixed operand across all destination vector elements. 

The MSA integer instruction set can be partitioned into the following functional groups: 

 Data transfer 

 Arithmetic 

 Comparison 

 Conversion 

 Logical and Shift 

 Unpack and Shuffle 

 Insertion and Extraction 

7.1.1 Data Transfer 

The data transfer group contains instructions that copy packed integer data values from 

one MSA register to another, and also between general-purpose registers and control 

registers. Table 6 shows the MSA data transfer instructions. These instructions are executed 

in the MSA unit and in the MIPS core. 
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Mnemonic Type Description Implementation 

FILL.df 2R Vector Fill from GPR  Figure 29 

CFCMSA ELM GPR Copy from MSA Control Register  Figure 29 

COPY_S.df ELM Copy from MSA to GPR Signed  Figure 29 

COPY_U.df ELM Copy from MSA to GPR Unsigned  Figure 29 

CTCMSA ELM GPR Copy to MSA Control Register  Figure 29 

INSERT.df ELM GPR Insert Element  Figure 29 

MOVE.V ELM Vector Move  Figure 29 

LDI.df I10 Immediate Load  Figure 29 

LD.df MI10 Vector Load  Figure 29 

ST.df MI10 Vector Store  Figure 29 

Table 6: Data transfer instructions in MSA 

Figure 29 shows data-paths of the MIPS32 core and the SIMD unit. The figure shows that 

stages are aligned and there are only four paths required to share data. These paths are: 

 A: Path A is used to copy one element from MSA register to GPR. The block called 

DFN chooses the element selected by the field “df/n” and depending on the 

instruction sign extension is performed.  Also data from MSA control register is 

copied using this data path.  

 B: Path B is used to copy data from GPR to MSA registers. Special unit 3 is used to 

transform the scalar data into vector data.  

 C: Path C is used to send data from MSA register to memory. The MIPS32 core 

calculates the memory address like in integer store instructions using the “rs” 

instruction field to read the address base from GPR and the “s10” instruction field 

as address offset. 

 D: Path D is used to receive data from memory to MSA registers. The MIPS32 core 

calculates the memory address like in integer read instruction. 

MOVE instruction is executed only in the SIMD unit. It copies values from MSA register to 

MSA register. The MSA Control block in the MIPS32 core represents the “Decode extension” 

implemented into the original MIPS32 core to support fundamental Release 6 features 

needed by the MIPS SIMD unit. 
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Figure 29: Interconnection between MIPS32 Core and MSA unit (control signals omitted) 

 

7.1.2 Arithmetic 

The arithmetic group contains instructions that perform basic arithmetic (additions, 

subtractions, and multiplications) on packed operands. This group also includes instructions 

that are used to perform high-level operations such as min/max, averaging, absolute values, 

and integer sign changes. All the arithmetic instructions support signed and unsigned 

integers unless otherwise noted. 
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Mnemonic Type Description Implementation 

ADD_A.df 3R Vector Add Absolute Values  Figure 40 

ADDS_A.df 3R Vector Saturated Add of Absolute Values  Figure 40 

ADDS_S.df 3R Vector Signed Saturated Add of Signed 
Values 

 Figure 40 

ADDS_U.df 3R Vector Unsigned Saturated Add of Unsigned 
Values 

 Figure 40 

ADDV.df 3R Vector Add  Figure 40 

ASUB_S.df 3R Vector Absolute Values of Signed Subtract  Figure 40 

ASUB_U.df 3R Vector Absolute Values of Unsigned Subtract  Figure 40 

AVE_S.df 3R Vector Signed Average  Figure 40 

AVE_U.df 3R Vector Unsigned Average  Figure 40 

AVER_S.df 3R Vector Signed Average Rounded  Figure 40 

AVER_U.df 3R Vector Unsigned Average Rounded  Figure 40 

DIV_S.df 3R Vector Signed Divide  Figure 40 

DIV_U.df 3R Vector Unsigned Divide  Figure 40 

DOTP_S.df 3R Vector Signed Dot Product  Dot Product 

DOTP_U.df 3R Vector Unsigned Dot Product  Dot Product 

DPADD_S.df 3R Vector Signed Dot Product and Add  Dot Product 

DPADD_U.df 3R Vector Unsigned Dot Product and Add  Dot Product 

DPSUB_S.df 3R Vector Signed Dot Product and Subtract  Dot Product 

DPSUB_U.df 3R Vector Unsigned Dot Product and Subtract  Dot Product 

HADD_S.df 3R Vector Signed Horizontal Add  Figure 40 

HADD_U.df 3R Vector Unsigned Horizontal Add  Figure 40 

HSUB_S.df 3R Vector Signed Horizontal Subtract  Figure 40 

HSUB_U.df 3R Vector Unsigned Horizontal Subtract  Figure 40 

MADDV.df 3R Vector Multiply and Add  Figure 40 

MAX_A.df 3R Vector Maximum Based on Absolute Values  MAX MN unit 

MAX_S.df 3R Vector Signed Maximum  MAX unit 

MAX_U.df 3R Vector Unsigned Maximum  MAX unit 

MIN_A.df 3R Vector Minimum Based on Absolute Value  MAX MN unit 

MIN_S.df 3R Vector Signed Minimum  MIN unit 

MIN_U.df 3R Vector Unsigned Minimum  MIN unit 

MOD_S.df 3R Vector Signed Module  Figure 40 
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Mnemonic Type Description Implementation 

MOD_U.df 3R Vector Unsigned Module  Figure 40 

MSUBV.df 3R Vector Multiply and Subtract  Figure 40 

MULV.df 3R Vector Multiply  Figure 40 

SUBS_S.df 3R Vector Signed Saturated Subtract of Signed 
Values 

 Figure 40 

SUBS_U.df 3R Vector Unsigned Saturated Subtract of 
Unsigned Values 

 Figure 40 

SUBSUS_U.df 3R Vector Unsigned Saturated Subtract of Signed 
from Unsigned 

 Figure 40 

SUBSUU_S.df 3R Vector Signed Saturated Subtract of Unsigned 
Values 

 Figure 40 

SUBV.df 3R Vector Subtract  Figure 40 

SAT_S.df BIT Immediate Signed Saturate  SAT unit 

SAT_U.df BIT Immediate Unsigned Saturate  SAT unit 

ADDVI.df I5 Immediate Add  Figure 40 

MAXI_S.df I5 Immediate Signed Maximum  MAX unit 

MAXI_U.df I5 Immediate Unsigned Maximum  MAX unit 

MINI_S.df I5 Immediate Signed Minimum  MIN unit 

MINI_U.df I5 Immediate Unsigned Minimum  MIN unit 

SUBVI.df I5 Immediate Subtract  Figure 40 

Table 7: Arithmetic instructions in MSA 

7.1.3 Comparison 

The comparison group contains instructions that compare two packed operands element-

by-element. The result of each comparison is saved to the corresponding position in the 

destination operand. 

Mnemonic Type Description Implementation 

CEQ.df 3R Vector Compare Equal  CEQ unit 

CLE_S.df 3R Vector Compare Signed Less Than or Equal  CLE unit 

CLE_U.df 3R Vector Compare Unsigned Less Than or 
Equal 

 CLE unit 

CLT_S.df 3R Vector Compare Signed Less Than  CLT unit 

CLT_U.df 3R Vector Compare Unsigned Less Than  CLT unit 

BNZ.df COP1 Immediate Branch If All Elements Are Not 
Zero 

 Branch unit 
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Mnemonic Type Description Implementation 

BNZ.V COP1 Immediate Branch If Not Zero (At Least One 
Element of Any Format Is Not Zero) 

 Branch unit 

BZ.df COP1 Immediate Branch If At Least One Element 
Is Zero 

 Branch unit 

BZ.V COP1 Immediate Branch If Zero (All Elements of 
Any Format Are Zero) 

 Branch unit 

CEQI.df I5 Immediate Compare Equal  CEQ unit 

CLEI_S.df I5 Immediate Compare Signed Less Than or 
Equal 

 CLE unit 

CLEI_U.df I5 Immediate Compare Unsigned Less Than or 
Equal 

 CLE unit 

CLTI_S.df I5 Immediate Compare Signed Less Than  CLT unit 

CLTI_U.df I5 Immediate Compare Unsigned Less Than  CLT unit 

Table 8: Comparison instructions in MSA 

7.1.4 Logical and Shift 

The logical and shift group contains instructions that perform bitwise logical operations. It 

also includes instructions that perform logical and arithmetic shift using the individual data 

elements of a packed operand. 

Mnemonic Type Description Implementation 

NLOC.df 2R Vector Leading Ones Count  Leading Ones/Zeros unit 

NLZC.df 2R Vector Leading Zeros Count  Leading Ones/Zeros unit 

PCNT.df 2R Vector Population Count  Population count 

BCLR.df 3R Vector Bit Clear  BIT unit 

BINSL.df 3R Vector Bit Insert Left  BINSL unit 

BINSR.df 3R Vector Bit Insert Right  BINSR unit 

BNEG.df 3R Vector Bit Negate  BIT unit 

BSET.df 3R Vector Bit Set  BIT unit 

SLL.df 3R Vector Shift Left  SLL unit 

SRA.df 3R Vector Shift Right Arithmetic  SRA unit 

SRAR.df 3R Vector Shift Right Arithmetic Rounded  SRAR 

SRL.df 3R Vector Shift Right Logical  SRL unit 

SRLR.df 3R Vector Shift Right Logical Rounded  SRLR unit 

BCLRI.df BIT Immediate Bit Clear  BIT unit 

BINSLI.df BIT Immediate Bit Insert Left  BINSL unit 
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Mnemonic Type Description Implementation 

BINSRI.df BIT Immediate Bit Insert Right  BINSR unit 

BNEGI.df BIT Immediate Bit Negate  BIT unit 

BSETI.df BIT Immediate Bit Set  BIT unit 

SLLI.df BIT Immediate Shift Left  SRL unit 

SRAI.df BIT Immediate Shift Right Arithmetic  SRA unit 

SRARI.df BIT Immediate Shift Right Arithmetic  SRAR 

SRLI.df BIT Immediate Shift Right Logical  SRL unit 

SRLRI.df BIT Immediate Shift Right Logical Rounded  SRLR unit 

ANDI.B I8 Immediate Logical And  Vector Operations 

BMNZI.B I8 Immediate Bit Move If Not Zero  Vector Operations 

BMZI.B I8 Immediate Bit Move If Zero  Vector Operations 

BSELI.B I8 Immediate Bit Select  Vector Operations 

NORI.B I8 Immediate Logical Negated Or  Vector Operations 

ORI.B I8 Immediate Logical Or  Vector Operations 

XORI.B I8 Immediate Logical Exclusive Or  Vector Operations 

AND.V VEC Vector Logical And  Vector Operations 

BMNZ.V VEC Vector Bit Move If Not Zero  Vector Operations 

BMZ.V VEC Vector Bit Move If Zero  Vector Operations 

BSEL.V VEC Vector Bit Select  Vector Operations 

NOR.V VEC Vector Logical Negated Or  Vector Operations 

OR.V VEC Vector Logical Or  Vector Operations 

XOR.V VEC Vector Logical Exclusive Or  Vector Operations 

Table 9: Logical and shift instructions in MSA 

7.1.5 Unpack and Shuffle 

The unpack and shuffle group contains instructions that interleave (unpack) the data 

elements of a packed operand. It also contains instructions that can be used to reorder 

(shuffle) the data elements of a packed operand. 

Mnemonic Type Description Implementation 

ILVEV.df 3R Vector Interleave Even  ILVEV unit 

ILVL.df 3R Vector Interleave Left  ILVL unit 

ILVOD.df 3R Vector Interleave Odd  ILVOD unit 
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Mnemonic Type Description Implementation 

ILVR.df 3R Vector Interleave Right  ILVR unit 

PCKEV.df 3R Vector Pack Even  PCKEV unit 

PCKOD.df 3R Vector Pack Odd  PCKOD unit 

SLD.df 3R GPR Columns Slide  SLD unit 

VSHF.df 3R Vector Data Preserving Shuffle  VSHF unit 

SLDI.df ELM Immediate Columns Slide  SLD unit 

SHF.df I8 Immediate Set Shuffle Elements  SHF unit 

 

7.1.6 Insertion and Extraction 

The insertion and extraction group contains instructions that are used to insert or extract 

elements in a MSA register. 

Mnemonic Type Description Implementation 

SPLAT.df 3R GPR Element Splat  SPLAT unit 

INSVE.df ELM Element Insert Element  INSVE unit 

SPLATI.df ELM Immediate Element Splat  SPLAT unit 

Table 10: Insertion and extraction instructions in MSA 

8 Architecture Implementation 

8.1 Overview 

Based on the objective this implementation should be as simple as possible. For example, 

we have implemented an in-order scalar microarchitecture because it is simpler than 

implementing superscalar or OoO. Pipelining is a well understand technique to improve 

performance. It has been part of computer architecture lectures for years, even from basic 

levels (15). Since SIMD unit cannot work with a processor we needed to found one. 

This SIMD unit was developed to work as a coprocessor, to easily change in the future the 

main core. Unfortunately, we could not find a MIPS32 or MIPS64 Release 5 core 

implementation.  So, we decided to use a MIPS32 soft-core processor called mips32r1_xum 

from opencores.org (53). It is an open source repository focused on hardware Intellectual 

property (IP).  

We upgraded the MIPS32 core with the minimal features from Release 6 needed by the 

MIPS SIMD Architecture. 
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8.2 MIPS32 core 

MIPS32 core mips32r1_xum is a 5-stage pipeline single-issue in-order processor. 

Unfortunately it only supports MIPS32 Release 1 ISA while the SMID unit has been 

developed based on MIPS64 Release 619, so is necessary at least a core running MIPS32  

Release 5. In consequence, it has been necessary to make some modifications to the core. 

We have been added the minimum MIPS32 Release 6 requirements to use the SIMD unit. 

Furthermore, the Exception Handler (Cop 0) was upgraded to support MIPS SIMD 

Architecture ISA. Finally, we have has been added support for unaligned memory 

operations as required by the SIMD unit at the memory stage. Figure 30 shows the new 

paths created and the MSA Control unit that control them.  

Table 11 shows the 11 instructions added to the MIPS32 core. Decode and execution of 

these instructions is done on both the MIPS32 core and the SIMD unit. Besides, execution 

is synchronized at the stage level, thus whenever is needed the core and SIMD side 

exchange data or control signals in both directions. Even though MIPS32 core and SIMD unit 

are separated designs for these 11 instructions both units cooperate as if they were one. 

Figure 29 showed both as big one unit. 

Finally, mips32r1_xum core does not have a branch predictor since this design does not 

need one. It is because it has a sort pipeline of 5-stages and branch instructions have a 

branch delay slot (54). This means that meanwhile a branch is resolved another instruction 

is executed avoiding to stall the pipeline.    

Both the main core and the SIMD unit have a 5-stage pipeline and their execution is aligned. 

Control signals are shared between control units. When any of the pipelines needs to stall 

at any stage the other pipeline stalls too, keeping instructions execution between pipelines. 

As a summary of the mips32r1_xum characteristics, we can list: 

 In-order single issue 

 Five-stage pipelining 

 MIPS32 Release1 (partial upgrade to Release 6) 

                                                           
19 In fact, it supports microMIPS32, microMIPS64, MIPS32 and MIPS64 for Releases 5 and 6 
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Figure 30: Modifications made to the main core to attach SIMD unit 

Instruction Type Purpose 

LD.df MI10 Vector Load 

ST.df MI10 Vector Store 

CTCMSA ELM GPR Copy to MSA Control Register 

CFCMSA ELM GPR Copy from MSA Control Register 

COPY_S.df ELM Copy from MSA to GPR Signed 

COPY_U.df ELM Copy from MSA to GPR Unsigned 

FILL.df 2R Vector Fill from GPR 

BNZ.V COP1 Immediate Branch If Not Zero (At Least One Element of Any 
Format Is Not Zero) 

BNZ.df COP1 Immediate Branch If All Elements Are Not Zero 

BZ.df COP1 Immediate Branch If At Least One Element Is Zero 

BZ.V COP1 Immediate Branch If Zero (All Elements of Any Format Are Zero) 
Table 11: Instructions introduced to MIPS32 core to support SIMD unit. 
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8.3 Fetch 

Figure 31 shows the interconnection between the SIMD coprocessor and the main core. The 

main core executes all instructions that are not SIMD. It also manages the SIMD unit, 

performing fetch and decode of the instructions and accessing memory. 

SIMD unit has a decoder. It is connected in parallel with the decoder of the MIPS core and 

snoops fetched instructions from the main core pipeline. When it detects MSA instructions 

it decodes them and SIMD unit starts to work. Otherwise SIMD unit just executes NOP 

operations. On the other hand, the main core also decodes SIMD instructions when these 

are issued to the pipeline and is able to determine whether they should be kept in the main 

pipeline in order to execute a specific task. These are instructions20 that require some 

intervention of the main core such memory operations, which involve address calculation, 

branches and instructions that access the general purpose register file. Oher SIMD 

operations are interpreted as NOP operations by the main core. Figure 31 shows the 

interconnection between the MIPS32 core and the SIMD unit at IF/DC stage. 

                                                           
20 Data transfer instructions 
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Figure 31: Interconnection between core and coprocessor 
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8.4 Decode 

SIMD unit has its own decode logic, and is able to generate all the necessary signals to 

activate and control all the lanes. Figure 32 shows the main signals generated by SIMD 

decode. Instruction recodification is done using the layout shown in Table 3.  
IF

/I
D

Decode

Source 1

Source 2

Source 3/Destination

Signed

Saturated

Lane Control

Format

WE register

WE memory

Read Memory

 

Figure 32: Signals generated by SIMD decode 

8.5 Register File 

The SIMD unit has a private register file. Each register stores a vector of 128-bit wide. There 

are 32 registers. Every vector register can be interpreted according to four formats: byte (8-

bit), halfword (16-bit), word (32-bit), doubleword (64-bit). It depends of the instruction field 

df. There is no way to know the data format of a vector unless associated to a specific 

instruction. Programmer is responsible of keeping the semantic of the application.  

Corresponding to the associated data format, a vector register consists of a number of 

elements indexed from 0 to n-1. Figure 6 shows the vector register layout for elements of 

all four data formats. Element 0 is always in the less significant part of the vector register. 

MSA vectors are stored in memory starting from the 0𝑡ℎ  element at the lowest byte 

address. The byte order of each element can be little-endian or big-endian depending on 

the implementation. The scalar floating-point unit (FPU) registers are mapped to the MSA 

vector registers.  
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MSA has operations that uses up to 3 source operands and only writes up to one register. 

In order to implement a register file with these features a memory with 3 read ports and 1 

write port is required. Figure 33 shows how the MSA register file should be. 

MSA 

Register 

File

Write Port

Read Port 1

Read Port 2

Read Port 3

 

Figure 33: Representation of the MSA register file 

Considering that the implementations is intended to run on FPGA, instead of building a 

multiported memory using logical elements, we have used the memory elements provided 

by the FPGA. These memories have two ports that can be used as read or write ports. The 

design contemplates one as a read port and the one as a write port and we implement three 

copies of the register file, in order to provide the 3 required read ports. Figure 34 shows 

how the memories ports are connected. The write port of all memories are connected in 

parallel, so all memories will have a copy of all values written.  

Using this three memory block in parallel we avoid to use LEs. An implementation of a 

register file 3R1W21 built as a memory declaration statement in Verilog, will generates a 

costly circuit that requires a lot of LEs. Moreover, FPGA memory elements have some 

interesting features such as initialization at compile time and visualization at run time using 

Quartus II. 

                                                           
21 3R1W: 3 read ports, 1 write port. 
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Figure 34: Implementation of the MSA register file 
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9 SIMD execution stage 

The SIMD unit is composed of several individual sub-units. Figure 35 shows all sub-units of 

the SIMD unit. The Vector Processing Unit (VPU) performs integer and bit-wise logical 

operations, There are some lanes that have three source operands to support fused 

operations. The Shuffle unit performs element permutation operations. There are three 

special units that are used to transform or adapt some values into vector representation 

and also to transform from one specific vector format to another one. In this chapter we 

describe these units. 
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Figure 35: SIMD execution stage 

9.1 Vector Processing Unit 

A Vector Processing Unit (VPU) executes vector operations over vector registers. This 

operations can be integer, bit-wise logical or even Floating Point operations. Each VPU is 

divided into identical elements called lanes. A lane is a basic building block unit of a VPU. A 

lane is similar to an ALU included in a scalar processor, with the important difference that 

all lanes work in a lock-stepped fashion. 
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To achieve the maximum parallel performance there must be a lane for each element. For 

instance, to perform a SIMD add over two vector registers of 4 elements in one single cycle 

there must have 4 lanes, one to perform each operation. But it is not, to save area we could 

implement the SIMD unit by utilizing from 1 up to 4 lanes. For instance, if we wanted to 

perform again the 4 element SIMD operation but using 2 lanes, it would require twice the 

time. Figure 36 shows an implementation using the same number of lanes than elements to 

process (left) and other that has half the lanes than elements to process. 

B[2]B[3] B[1] B[0]

A[2] A[1] A[0]

+ + + +

A[3]

C[2]C[3] C[1] C[0]
 

B[2]B[3] B[1] B[0]

A[2] A[1] A[0]

+ +

A[3]

C[2]C[3] C[1] C[0]
 

  

B[2]B[3] B[1] B[0]

A[2] A[1] A[0]

+ +

A[3]

C[2]C[3] C[1] C[0]
 

Figure 36: Four lanes (left) vs two lanes (right) 

 

The VPU has to deal with four data-formats, it means that we have four width of elements 

and therefore lanes. There are two options here, design lanes for each of the four width or 

design lanes that can joint (sub-lanes) to perform bigger operations. For instance, joining 

two 8-bit lanes to perform 16-bit operations or four 8-bit lane to perform 32-bit operation.  

Using sub-lanes reduces area consumption but increases the critical path and the 

complexity of the design and coding, because extra control logic is needed. On the other 
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hand, using individual lanes only requires to generate one parametrized lane, and the 

compiler will generate all four formats. Future work should be find a middle point. 

9.2 Multipurpose adder lane 

The circuit shown in Figure 37 allows the SIMD unit to calculate 22 different operations. 

These operations are shown in Table 12 and all of them are variations of addition and 

subtraction operations. Some operations use a secondary unit, that can be unit special 1, 2 

or 3 to transform data before computation. For instance, to fill a vector B with as many 

copies of an immediate value as elements in the vector. 
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Figure 37: Multipurpose adder lane 
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Input Signals Control Signals 

Description Instruction 
Si

gn
ed
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C
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A
b

s(
A
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D
ec

(A
) 

A
b

s(
B

) 

D
ec

(B
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0 0 0001 0 0 1 0 0 0 0 0 A+u5 ADDVI.df 

0 0 0010 0 0 0 0 0 0 0 0 A-u5 SUBVI.df 

0 0 0001 0 0 1 0 0 0 0 0 A+B ADDV.df 

0 0 0010 0 0 0 0 0 0 0 0 A-B SUBV.df 

0 0 0110 0 0 1 0 1 0 1 0 abs(A)+abs(B) ADD_A.df 

1 1 0110 1 1 1 0 1 0 1 0 sat(abs(A)+abs(B)) ADDS_A.df 

1 1 0001 1 1 1 0 0 0 0 0 sat(sig(A)+sig(B)) ADDS_S.df 

0 1 0001 0 0 1 0 0 1 0 1 sat(A+B) ADDS_U.df 

1 0 0111 1 1 1 0 0 1 0 1 (sig(A)+sig(B))/2 AVE_S.df 

0 0 0111 0 0 1 0 0 1 0 1 (A+B)/2 AVE_U.df 

1 0 1000 1 1 1 1 0 1 0 1 (sig(A)+sig(B) +1)/2 AVER_S.df 

0 0 1000 0 0 1 1 0 1 0 1 (A+B+1)/2 AVER_U.df 

1 0 0001 1 1 1 0 0 0 0 0 sig(A)+sig(B) HADD_S.df 

0 0 0001 0 0 1 0 0 1 0 1 A+B HADD_U.df 

1 0 0010 1 1 0 0 0 0 0 0 sig(A)-sig(B) HSUB_S.df 

0 0 0010 0 0 0 0 0 1 0 1 A-B HSUB_U.df 

1 1 0010 1 1 0 0 0 0 0 0 sat(sig(A)-sig(B)) SUBS_S.df 

0 1 0010 0 0 0 0 0 1 0 1 sat(A-B) SUBS_U.df 

0 0 1011 0 1 0 0 0 1 0 1 sat(A-sig(B)) SUBSUS_U.df 

0 0 1100 0 0 0 0 0 1 0 1 sat(sig(A-B)) SUBSUU_S.df 

1 0 1101 1 1 0 0 0 1 0 1 abs(sig(A)-sig(B)) ASUB_S.df 

0 0 1101 0 0 0 0 0 1 0 1 abs(A-B) ASUB_U.df 

Table 12: Instructions that uses multipurpose adder lane. 

9.3 Multiplier lane 

Circuit show in Figure 38 performs a multiplication between two elements. The most 

significant half of the multiplication result is discarded. The multiplier is implemented using 

dedicated hardware from the FPGA instead of building them using only logical elements, 

leveraging that dedicated hardware multipliers are faster than those implemented with 

only logic elements. The implementation details from the multiplier are discussed in section 

6.2. The multiplication result can be added or subtracted from a third operand to execute 

fused operations. Table 13 shows operations that can be executed using this circuit. 
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Figure 38: Multiplication circuit and fused multiplication 
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Description Instruction Purpose 
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0 0 0011 0  0  A *B MULV.df Vector Multiply 

0 0 1001 1 1 C+A*B MADDV.df Vector Multiply and Add 

0 0 1010 0 1 C-A*B MSUBV.df Vector Multiply and Subtract 
Table 13: Instructions that use Multiplication circuit 

9.4 Divider circuit 

Figure 39 shows the divider circuit and Table 14 shows the instructions that are executed 

on this circuit. Divider circuit is implemented using the LPM modules provided by Altera. 

LPM-divider is a pipelined operation in which each operation (division and module) requires 

4 cycles.  
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Therefore, division is the operation that requires the highest execution time. Moreover, the 

division module is the most expensive in terms of area, due to the logic elements 

necessaries to its implementation. For instance, a 64-bit divider uses about 6k logical 

elements. That is approximately the same amount of elements that uses the entire MIPS32 

core. Implementation details are discussed in the section 9.4. 
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Figure 39: Divider circuit 
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Input Signals 

Description Instruction Purpose 
Si

gn
ed

 

Sa
tu

ra
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d
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1 0 1100 sig(A)/sig(B) DIV_S.df Vector Signed Divide 

0 0 1100 A/B DIV_U.df Vector Unsigned Divide 

1 0 0101 sig(A)%sig(B) MOD_S.df Vector Signed Module 

0 0 0101 A%B MOD_U.df Vector Unsigned Module 
Table 14: Instructions that uses divided circuit 

Figure 40 shows the 3R lane that is composed by the circuits described above, multipurpose 

adder, multiplier and divider. These circuits share some resources: Two input multiplexors, 

used to calculate absolute values; and the output multiplexor, used to choose the final 

result. To achieve the maximum data level parallelism, we decided to implement one lane 

per element to process. By doing this we can process all data formats using the same time. 

There are 30 of these 3R lanes inside the VPU.  

 16 lanes of 8-bit wide to calculate Byte format operations 

 8 lanes of 16-bit wide to calculate Halfword format operations 

 4 lanes of 32-bit wide to calculate Word format operations 

 2 lanes of 64-bit wide to calculate Doubleword operations 

Figure 61 (in the Annexes) shows how the vector result is reconstructed in the different 

available formats: byte, halfword, word and doubleword using the results of 3R lanes. 
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Figure 40: 3R Lane, multiplier, divider, adder and substrate multipurpose  
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9.5 Special unit 1 

Figure 41 shows the special unit 1 schematically. This unit transforms between some vectors 

formats, including:   

 Byte to Halfword 

 Halfword to Word 

 Word to Doubleword 

Each transformation only takes odd or even values from the original format and depending 

on the flag signed a sign extend operation is performed. Figure 62 and Figure 63 shows the 

implementation of the special unit 1. Figure 64 shows the selector for the result in the 

desired format. The result of the special unit 1 is sent to the VPU or the Shuffle unit. 
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Figure 41: Special unit 1 

 

9.6 Special unit 2 

Figure 42 shows the special unit 2 schematically. This unit is similar to special unit 1. Circuits 

shown in Figure 62, Figure 63 and Figure 65 compose the special unit 2. One extra feature 

is that here Immediate vectors are created from the immediate value taken from the 

instruction. Figure 66 shows the multiplexor that chooses between of the possible results. 

Note that Even/Odd transformations are mismatch between the special unit 1 and the 

special unit 2. 
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Figure 42: Special unit 2 

 

9.7 Special unit 3 

Figure 43 shows the special unit 3. The main purpose of this unit is to choose between 

source operand 3 from the Vector Register File (VRF) or the value read from the General 

Purpose Register (GPR). If the GPR is selected, this value is truncated 22and replicated to 

create all 4 vector formats. Figure 67 shows the implementation of the special unit 3, while 

Figure 68 shows the multiplexor that chooses the final result of this unit. 
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Figure 43: Special unit 3 

                                                           
22 According to the format selected, byte, halfword or word. 
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10 Memory 

MIPS processors are designed under Harvard architecture philosophy, this means that 

instructions and data are stored in separate memories. As a result, the pipeline design has 

to consider an instruction cache and a data cache. The minimum storage capacity 

(granularity) is a cache line, which can have just a few bytes, typically 64-bytes. MIPS release 

prior to Release 5 support only aligned memory accesses. Release 5 of the architecture 

supports 128-bit memory accesses without natural alignment. 

Considering what has been described above, as well as the fact that MIPS SIMD Architecture 

only runs on Release 5 or higher, we have implemented these memories according with 

Release 5 requirements, such as load/store of 128-bit size and unaligned memory accesses. 

Moreover, these memories are designed to use memory elements from the FPGA, so they 

are not caches strictly. Figure 44 shows schematically the data memory and the instruction 

memory. The size of the memories depends on the width of the address (“n” and “m”). Data 

memory reads 16 bytes and can write 1, 2, 4, 8 or 16 bytes at the same time. 
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Figure 44: Instruction and data memory 

10.1 Instruction Memory 

This memory stores all the instructions that are going to be executed by the processor 

including those that should be executed by the SIMD unit. Since each instruction is 

composed by 4 bytes (32-bits) each memory row stores a whole instruction. This memory 

has 128k rows of 4-byte wide, with a total capacity of 512 kB. Instruction memory is 

implemented using FPGA’s memory elements in order to save logic elements and get better 

operational frequency. Finally, this memory is initialized using hexadecimal files specified at 

compile time. 
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10.2 Data Memory 

This memory stores all the data used by the processor and the SIMD unit. The data memory 

reads 16 bytes (128-bits) at the same time to provide data to read operations of all sizes. 

Additionally, this memory can write 1, 2, 3, 4, 8 or 16 bytes at the same time. It is used by 

nibble-store operations, half, word and double word store operations. One important 

feature is that all read and write operations do not require natural alignment at the address 

level.  

To provide unaligned support it has been decided to use 16 individual memories (cells) 
where each store a byte. Based on the address that is set by the processor to read or write 
it is necessary to reorder the cell’s contents. Figure 46 and Figure 47 show the mechanism 
to rearrange memory access.  

Figure 48 shows the data path to the memory cells. The Write Enable (WE) signals of each 
memory cell are also rearranged. The 4 less significant bits from the address are used to 
calculate the positions of a given byte to a given cell. The remainder bits are used to select 
the row of each memory cell. The constant 4-bits adders are used to allow read or write 
operations from segments of two adjacent memory rows to create a 128-bits row. 

Figure 45 shows an example of row and memory calculation. Suppose that the processor 
needs to read address 3226. It is divided into the lower 4 bits (10) and the remaining upper 
bits (201). Then using the IDs of each memory cell given by its position (15 to 0) a 4 bit offset 
is calculated. This offset allows to jump to the next row when it is needed. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

200 X X X X X X X X X X X X X X X X

201 F E D C B A X X X X X X X X X X

202 X X X X X X P O N M L K J I H G

203 X X X X X X X X X X X X X X X X

Memory CellsAddress 

Rows

Data F E D C B A P O N M L K J I H G

Cell ID 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Offset 0-Addr[3:0] 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6

Result Addr+Offset 3231 3230 3229 3228 3227 3226 3241 3240 3239 3238 3237 3236 3235 3234 3233 3232

Row Result[n:4] 201 201 201 201 201 201 202 202 202 202 202 202 202 202 202 202

Address [n:4] [n:0]

3226 201 10

 

Figure 45: Example of row and memory cell calculation 

Once all the 16 bytes of a row (or rows) have been read, we need to rearrange the data 
using the 4 lower bits from the address and the left multiplexor shown in Figure 46. Finally, 
we send the data back to the processor. Depending on address, data could be fit in one 
memory row if it matches with the natural alignment or it could be split in two rows 
(unaligned). 
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Figure 46: Multiplexors used to rearrange the data to load and store it into the data memory 
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Figure 47: Logical circuit that creates the 16 write enable signals and multiplexor used to rearrange the write enable 
mask. 
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Figure 48: Calculation of rows for each memory cell 
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11 Software Tools 

In this chapter we describe the software tools used to develop and test this project. 

Moreover, we describe a small application that we created to load programs into the FPGA 

for simulations. 

11.1 GCC 

In order to compile C programs to generate MIPS binaries we used a version of the GCC 

compiler provided by Imagination Community. This compiler is distributed together with 

Codescape MIPS SDK. The version (4.9.0) includes support for MIPS SIMD Architecture (55). 

Figure 49 shows the compilations flags needed to enable the SIMD ISA. As a requirement, 

MSA can be used only with MIPS Release 5 or higher, it can be 32 or 64-bit, but FPU must 

to be 64-bits wide. Using optimization flag –O2 GCC tries to auto-vectorize loops. 

 

Figure 49: Compiler flags to enable SIMD 

After the compilation there are some points to consider. First, the executable files 

generated by GCC use the Executable and Linkable Format (ELF). Second, it is desirable to 

generate Bare-Metal applications [ref to bare]. In consequence, it is indispensable to 

provide some extra info to GCC linker to avoid or at least to override syscalls to the 

Operating System. To fulfill this, the file “scrip.ld” has been provided to GCC the linker. 

Figure 50 shows this script, that indicates the start address of “.text” section, the end of 

data section and the other sections that will appear in the executable file. 

 

Figure 50: File script.ld 
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Figure 51 shows the file “startup.S”, that initializes the global pointer ($gp) and the stack 

pointer ($sp), and then calls the main function from the program that is going to be 

executed. When the program ends, the exit function is called. The function just keeps the 

processor spinning at a certain address. When this address is reached the emulator 

(ModelSim) knows that the simulation has finished. 

 

Figure 51: File startup.S 

 

 

Figure 52 shows the makefile used to compile and link bare-metal MIPS applications. First, 

the object files are created from the source code of the target application and “startup.S” 

file. Then they are linked using “script.ld” file. Once the executable application has been 

built is possible to run it using QEMU but to run it on ModelSim some additional steps are 

required. 

 

Figure 52: Makefile 

Once the application is compiled the next step is disassemble it. We are using CodeBench 

from MentorGraphics (56), its most recent version is 2.24.51.20140217. Figure 53 shows an 

example of disassembled code. CodeBench provides the memory address for each 

instruction and data. With this information it is possible to use an application that we have 
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developed call “translate” to create all *.hex files to fill memory cells required by ModelSim. 

These additional steps are essential because every memory cell requires an individual *.hex 

file and each memory cell stores only a byte. Finally, “translate” application fills with zeros 

the memory space that is not used by the application to avoid warning messages. 

 

Figure 53: Fragment of a decompile file using CodeBench 

11.2 QEMU 

Is possible to run MIPS applications on QEMU (57) which is a generic and open source 

machine emulator. It supports several architectures. Version 2.0 and higher supports MIPS 

Release 5 and SIMD instructions. Codescape MIPS SDK also includes QEMU. QEMU can be 

used to test applications and debug them using for instance GDB that is supported by 

QEMU.  

Unfortunately QEMU only gives us information at software level23, to obtain more accurate 

information at circuit level like information in each register, memory, buses, control signals, 

stages of the pipeline and so on we need to use a different tool. 

11.3 ModelSim 

ModelSim is a simulation tool developed by Mentor Graphics for simulation of hardware 

description languages (HDL). It supports different languages as VHDL, Verilog and SystemC. 

Quartus II suite includes a free version of ModelSim and it is linked to run simulation on 

ModelSim from Quartus II with one click. Once everything is configured, ModelSim 

generates waveforms allowing to observe the behavior of each component even at the gate 

                                                           
23 QEMU allows to read data at the register level but not at the microarchitectural level. 
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level. Figure 54 shows an example of waveforms. Once a simulation has been executed it 

becomes possible to traverse across all signals.  

 

Figure 54: Example of waveforms generated by ModelSim 

Analyzing waveforms implies much toil because there are a lot of them. ModelSim includes 

a memory visualizer; Figure 55 shows a data portion example. Despite of the benefits that 

are provided by this tool, sometimes is not enough to debug. Memories are too big to keep 

track of changes cycle by cycle. 

 

Figure 55: Memory visualization in ModelSim 

The term instrumentation refers to the ability to monitor or measure the level of a product's 

performance and to diagnose errors. In programming, this means the ability of an 

application to incorporate (58):  

 Code tracing:  Receiving informative messages about the execution of an application 

at run time. 

 Debugging: Tracking down and fixing programming errors in an application under 

development. 

 Profiling: Tracking the performance of the application and events of the system via 

performance counters. 

 Event logs: Tracking major events in the execution of the application. 

These instrumentations concepts can be applied to hardware development since modern 

hardware development is similar to software development since it uses programing 

languages as well. Moreover, in the hardware world Debugging process is formally known 

verification (47).  
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It is often desired to keep verification code separated from the design code. We decided to 

use compiler directives to enable or disable instrumentation. 

This has been implemented across the project in key points like write and read ports of 

memories, VPU, Control unit and so on. We have also created a test bench. Figure 56 shows 

a piece of code used to keep track of read and write operations. Figure 57 shows an example 

of a piece of flow data on the VPU. Each cycle VPU generates a result 

`ifdef TraceDebug 

initial 

begin 

 f = $fopen("output.txt","w"); 

 g = $fopen("trace.txt","w"); 

 $fwrite(f,"WE\tAddress\t\tData\n"); 

 $fwrite(g,"PC\t\tInstruction\n"); 

 @(negedge Reset_sys); //Wait for reset to be released 

 @(posedge clk_sys);   //Wait for fisrt clock out of reset 

   

  i = 0; 

  while(InstMem_Address!=32'h1fc00028) 

  begin 

  @(posedge clk_sys); 

  i=i+1; 

  if(InstMem_Ready) 

  begin 

   $fwrite(g,"%h\t%h\n",InstMem_Address, 

   Instruccion); 

  end 

  if(|DataMem_Write) 

  begin 

   $fwrite(f,"%h\t%h\t%h\n",DataMem_Write, 

   DataMem_Address,Data_Write); 

  end 

  if( DataMem_Read & DataMem_Ready ) 

  begin 

   $fwrite(f,"Read\t%h\t%h\n", 

   DataMem_Address,Data_Read); 

  end 

  end 

  

   

  $fwrite(f,"\nClock ticks: %d\n",i); 

  $fclose(f);   

  $fclose(g); 

  $display("\nClock ticks: %d\n",i); 

   

  $finish; 

end 

`endif 
Figure 56: Example of instrumentation code 
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Figure 57: A segment of a trace execution from the VPU 

The final step to validate the implementation is comparing the output of the simulation and 

the execution of the same application running on QEMU. The results must match.  

  

PC Instruction Src1 ReadA Src2 ReadB Dest Result

1fc00318 78ccf912 31 0000227cffffc7d1ffffeb3f00001006 12 0000098e0000098e0000098e0000098e 4 09461e2e075ac955fe7d25d6fec19941

1fc00318 78ccf912 31 0000227cffffc7d1ffffeb3f00001006 12 0000098e0000098e0000098e0000098e 4 09461e2e075ac955fe7d25d6fec19941

1fc0031c 7be01ce6 3 06894f1f0194c1ddf53a239bced111fe 0 0001713cfffe9f10000268acfffcdf34 19 06774f1f016c3f230b3a2365322f1102

1fc00320 78c9a092 20 ffff9686ffffe42c00001b4d00000059 9 0000300b0000300b0000300b0000300b 2 f4313928043aa84b04630e33fe3933c0

1fc00324 78be0cd9 1 08c971170217dc92f8835ba1f74a4f4d 30 00000000000000000000000000000000 19 08c971170217dc92f8835ba1f74a4f4d

1fc00328 78be8e59 17 ee9842f708d6b3f706a7bbee17f61db5 30 00000000000000000000000000000000 25 ee9842f708d6b3f706a7bbee17f61db5

1fc00328 78be8e59 17 ee9842f708d6b3f706a7bbee17f61db5 30 00000000000000000000000000000000 25 ee9842f708d6b3f706a7bbee17f61db5

1fc0032c 78beac59 21 e71b56c5de21c55610fe1b7b1184744d 30 00000000000000000000000000000000 17 e71b56c5de21c55610fe1b7b1184744d
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12 Evaluation 

12.1 FPGA utilization 

Table 15 shows a summary of hardware resources used by the implementation. We can see 

that the SIMD unit uses a huge amount of resources (75.55%) of the FPGA. It is not a fair 

comparison between the MIPS32 core because SIMD unit supports operations up to 64-bit 

and MIPS32 only 32-bit Some operations increase quadratically the amount of resources 

needed with respect the width of the operation. Moreover, SIMD unit supports more 

instructions than the MIPS32 core.  

 

Unit LEs Utilization 

MIPS32 Core 6,937 6.06% 

VPU and Shuffle 81,341 71.05% 

SIMD miscellanies 5,153 4.50% 

Memory 3,128 2.73% 

Total 96,559 84.35% 
Table 15: Resources of the implementation 

MIPS32r1_xum core only can run up to 30 MHz so entire maximum frequency of project is 

limited by the MIPS32 core. To achieve higher a frequency pipeline size should increase too. 

But MIPS32 processor must be modified as well to keep stage synchronization. 

Nevertheless, the maximum frequency achieve by the SIMD unit is about 60 MHz, but also 

will benefit of extra pipeline. 

12.2 Benchmarks 

To evaluate the performance of the SIMD unit a couple of micro benchmarks have been 

compared considering three scenarios.  

 Compile from “C” code using the maximum optimization flag supported by 

Codescape but avoiding to use SIMD instructions too (-O2 flag). 

 Compile from “C” code using the maximum optimization flag supported by 

Codescape and enable SIMD instructions and auto-SIMD by GCC (-mmsa -O2 flag). 

 Rewrite the benchmark kernel in assembler using all possible SIMD instructions 

and for the remaining “C” code use the maximum optimization flag. 

There are some restrictions to run benchmarks, the FPU is not included on the main core, 

neither floating point SIMD. Moreover, memory size is limited up to 512 KB and there is not 

any operating system that can be executed without a full implementation of the MIPS ISA. 

These are the reasons why it has been decided to use micro benchmarks, the 
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implementation of the remaining elements that are needed to integrate the complete 

system are out of the scope of this thesis. We have used two microbenchmarks: FDCT and 

Matmul. 

12.2.1 FDCT 

An example of the use of the Fast Discrete Cosine Transform (FDCT) is as a kernel on JPEG 

codification. FDCT requires a lot of computation based on integer array elements. Some 

characteristics are that it operates with arrays and bit operations. As input it has a Matrix 

of 16x16 32-bit elements that in our experiments is initialized with random data. 

Table 16 shows the results of executing this benchmark under the constraints of each of the 

three scenarios proposed. The speedup is calculated using the number of cycles required to 

execute the benchmark. The difference between using SIMD instructions or not is up to 

4.05x over the code generated by GCC using optimization flag “-O2”. 

 

Optimization Instructions Cycles Step Speedup Cumulative Speedup 

-O2 451 10299 1.0x 1.0x 

-O2 mmsa 642 5694 1.81x 1.81x 

Hand written assembly 387 2546 2.24x 4.05x 
Table 16: FDCT Benchmark results, total speedup of using SIMD is 4.05x 

 

 

Figure 58: FDCT Benchmark results 
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12.2.2 Matmult 

Matmult is a matrix multiplication of two 20x20 matrices. Both matrices were filled with 

random data. Some features are loops, nested loops and arrays.  

Table 17 shows the results of executing this benchmark in the three scenarios proposed. 

The speedup is calculated using the number of cycles required to execute the benchmark. 

The speedup of using SIMD instructions with hand written assembly is 2.68x over the code 

generated by GCC using optimization flag “-O2”. 

 

Optimization Instructions Cycles Step Speedup Cumulative Speedup 

-O2 195 85825 1.0x 1.0x 

-O2 -mmsa 194 49803 1.72x 1.72x 

Hand written assembly 194 31903 1.56x 2.68x 
Table 17: Matmult Benchmark results, total speedup of using SIMD is 2.68x 

 

 

Figure 59: Matmult Benchmark results 
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12.3 Summary 

It has been implemented 123 SIMD instructions, as well as it has been built and tested, using 

an entire test bench to take code C code, compile it with GCC and test in Simulink. Two 

micro benchmarks have been executed with and without SIMD instructions to study the 

impact in performance of adding SIMD support, as well as the effectiveness of GCC auto 

vectorization. 
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13 Future work 

Current implementation of the MIPS SIMD Architecture is still under development. It can 

be expanded with the incorporation of Floating-Point SIMD operation lanes. This project is 

part of a bigger project, that has as main goal the design and implementation of a 

superscalar processor with out-of-order support, based on MIPS64 Release 6 (13). 

Figure 60 shows a block diagram of the superscalar processor. That project is divided in 

smaller projects, some of them are SIMD, FPU and Load/Store Queue. The FPU will be 

transformed into FPU lanes and integrated into the SIMD unit. The SIMD Functional Units 

(VPU, Shuffle, FP) will be used in the superscalar processor. An alternative to increase the 

performance the SIMD unit is to support a wider vector register set of 256 bits. MSA scales 

with the vector register width.  
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Figure 60: Superscalar processor 
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14 Conclusions 

We realized that designing a microarchitecture requires significant effort and expertise. It 

is full of challenges, because there is always a tradeoff between performance and power. 

Computer architecture has been improving designs generation by generation and always 

trying to keep easy the programmer life. We are in an inflection point, because now the 

programmer has to take care about de architecture in order to achieve performance. 

Parallel programming models such as OpenMP are helping. It is just the beginning since ILP, 

DLP and TLP are starting to mix and new architectures are appearing. Also new execution 

models that exploits them are appearing too, such as SIMT.  

We have to keep in mind that classic models and techniques are also evolving such as, new 

SIMD extensions with wider registers and more features will continue appearing. For 

instance, from MMX, SSE, AVX and AVX-512 Intel has move from 64-bit, 128-bit, 256-bit and 

512-bit wide. We can expect 1024-bit wide SIMD extensions to appear in the mid-term 

future. We have to start to think in parallel from the basic “computer education”, 

programmers and computer architects. That is the main goal of this big project. Encourage 

new generations to thing in parallel.  
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16 Annexes 

16.1 Joining results from 3R lanes 
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Figure 61: Selector of vector result format 
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16.2 Detail Implementation of Special 1 unit 
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Figure 62: Implementation of special unit 1 
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Figure 63: Implementation of special unit 1 (cont.) 
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[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]
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Figure 64: Joining result of special unit 1 
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16.3 Detail implementation of Special 2 unit 
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Figure 65: Implementation of the special unit 2 
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Figure 66: Result of the special unit 2 
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16.4 Detail implementation of Special 3 unit 
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Figure 67: Implementation of special unit 3 
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1000

1001
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00XX
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[127:0]GPR Byte

GPR Half

GPR Word

GPR Double

Src 3

Src 3

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

C

[3:0]

[1:0]
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Figure 68: Result of special unit 3 

  



 

 
102 

 

16.5 VSHF unit 

Figure 69 shows the VSHF unit. This unit is used to process Vector Data Preserving Shuffle 

instruction in 4 vector formats. For the correct implementation of this unit is required a 

specific circuit responsible for the operation over each vector format. This circuits are 

shown in Figure 70, Figure 71, Figure 72 and Figure 74.  

V
S

H
F

[127:0]

VSHF out[127:0]A
[127:0]B
[127:0]C

DF

[1
:0

]

 

Figure 69: VSHF unit 
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LSB
[127:0]

[127:0]
[255:0]

MSB

A
B

[8i+5:8i]

[4:0]

32

[23:16]

[15:8]

[7:0]

[47:40]

[39:32]

[31:24]

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

[151:144]

[143:136]

[135:128]

[175:168]

[167:160]

[159:152]

[199:192]
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[183:176]

[223:216]

[215:208]

[207:200]
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M
U

X
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2
x
1

[7:0]

C
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0

1

Byte i
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:0

]

[7:0]

For i in 

0 .. 15

 

Figure 70: Implementation of VSHF unit Byte format 
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LSB
[127:0]

[127:0]
[255:0]

MSB

A
B

[16i+5:16i]

[3:0]

16

[47:32]

[31:16]

[15:0]

[95:80]

[79:64]

[63:48]

[143:128]
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[159:144]

[239:224]
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U

X
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6
x
1

[15:0]

C
(16i+6)

(16i+7)

0

1

Half i

[1
5
:0

]

[15:0]

For i in 

0 .. 7
 

Figure 71: Implementation of the VSHF unit Halfword format 
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LSB
[127:0]

[127:0]
[255:0]

MSB

A
B

[32i+5:32i]

[2:0]

8

[95:64]

[63:32]

[31:0]

[191:160]
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[127:96]

[255:224]
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U
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x
1

[31:0]

C
(32i+6)

(32i+7)

0

1

Word i
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1
:0

]

[31:0]

For i in 

0 .. 3
 

Figure 72: Implementation of the VSHF unit Word format 
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LSB
[127:0]

[127:0]
[255:0]

MSB

A
B

[64i+5:64i]

[1:0]

4

[191:128]

[127:64]

[63:0]
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U
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4
x
1
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C
(64i+6)
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0

1
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4
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]
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For i in 

0 .. 1
 

Figure 73: Implementation of the VSHF unit Doubleword format 
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16.6 SRLR unit 

Figure 74 shows the SRLR unit. This unit perform vector shift right logical rounded vector 

bit count shift right logical with rounding. This unit is used to calculate instructions SRLR and 

SRLRI. To calculate SRLRI Special unit 2 is used. Figure 75, Figure 76, Figure 77 and Figure 78 

shows the implementation of SRLR unit for each vector format. 

The elements in vector A are shifted right logical by the number of bits the elements in 

vector B specify modulo the size of the element in bits. The most significant discarded bit is 

added to the shifted value (for rounding). The operands and results are values in integer 

data format specified by df field. 

S
R

L
R

[127:0]

SRLR out[127:0]A

[127:0]B

DF

[1
:0

]

 

Figure 74: SRLR unit 
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For i in 

0 .. 15

>>

<<

1

1

[2:0]

[7:0]

[7:0]
[7:0]

[8i+2:8i]

[8i+2:8i]

[8i+7:8i]

[7:0]

[8i+7:8i]

B

A

[6
:0

]

MSB LSB

Round

B

A

[7:0]Round

Byte i

[2
:0

]

Zero

[7
:0

]

[7
:0

]

1

0

[7
:0

]

[7:0]

Zero

 

Figure 75: Implementation of the SRLR unit byte format 
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For i in 

0 .. 7

>>

<<

1

1

[3:0]

[15:0]

[15:0]
[15:0]

[16i+3:16i]

[16i+3:16i]

[16i+15:16i]

[15:0]
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B

A
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4
:0

]
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Round

B

A

[15:0]Round
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[3
:0

]
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5
:0

]
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5
:0

]

1

0

[1
5
:0

]

[15:0]

Zero

 

Figure 76: Implementation of the SRLR unit halfword format 
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For i in 

0 .. 3

>>

<<

1

1

[4:0]

[31:0]

[31:0]
[31:0]

[32i+4:32i]

[32i+4:32i]

[32i+31:32i]

[31:0]

[32i+31:32i]

B

A

[3
1
:0

]

MSB LSB

Round

B

A

[31:0]Round

Word i
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:0

]

Zero
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1
:0

]

[3
1
:0

]

1

0

[3
1
:0

]

[31:0]

Zero

 

Figure 77: Implementation of the SRLR unit word format 
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For i in 

0 .. 1

>>

<<

1

1

[5:0]

[63:0]

[63:0]
[63:0]

[64i+5:64i]

[64i+5:64i]

[64i+63:64i]

[63:0]

[64i+63:64i]

B

A

[6
2
:0

]

MSB LSB

Round

B

A

[63:0]Round

Double i
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]
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3
:0

]
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3
:0

]

1

0
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3
:0

]

[63:0]

Zero

 

Figure 78: Implementation of the SRLR unit doubleword format 
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16.7 SRAR unit 

Figure 79 shows the SRAR unit. This unit is used to calculate instructions SRAR and SRARI. 

To calculate SRARI Special unit 2 is used to. Figure 80, Figure 81, Figure 82 and Figure 83 

shows the implementation of SRLR unit for each vector format. 

The elements in vector A are shifted right arithmetic by the number of bits the elements in 

vector B specify modulo the size of the element in bits. The most significant discarded bit is 

added to the shifted value (for rounding). The operands and results are values in integer 

data format df field. 

S
R

A
R

[127:0]

SRAR out[127:0]A

[127:0]B

DF

[1
:0

]

 

Figure 79: SRAR unit 
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For i in 

0 .. 15

>>>

<<

1

1

[2:0]

[7:0]

[7:0]
[7:0]

[8i+2:8i]

[8i+2:8i]

[8i+7:8i]

[7:0]
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]
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B

A
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:0

]
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:0

]

[7
:0

]

1

0

[7
:0

]

[7:0]

Zero

 

Figure 80: Implementation of the SRAR unit byte format 
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For i in 

0 .. 7

>>>

<<

1

1

[3:0]

[15:0]

[15:0]

[16i+3:16i]

[16i+3:16i]

[16i+15:16i]

[15:0]
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]
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A
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]
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5
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]
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5
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]

1

0
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5
:0

]

[15:0]

Zero

 

Figure 81: Implementation of the SRAR unit halfword format 
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For i in 

0 .. 3

>>>

<<

1

1

[4:0]

[31:0]

[31:0]
[31:0]

[32i+4:32i]
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1
:0
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1
:0
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1

0
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1
:0

]

[31:0]

Zero

 

Figure 82: Implementation of SRAR unit word format 
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For i in 

0 .. 1

>>>

<<

1

1

[5:0]

[63:0]

[63:0]
[63:0]

[64i+5:64i]

[64i+5:64i]
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2
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]
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3
:0

]
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3
:0

]

1

0
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3
:0

]

[63:0]

Zero

 

Figure 83: Implementation of the SRAR unit doubleword format 
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16.8 SLD unit 

Figure 84 shows the interconnection of the SLD unit to one of the 64-bit wide 3R lane. This 

is done to use its 64-bit divider. So, we can calculate module between 64-bit general 

purpose value and one constant 16, 8, 4 or 2. Figure 85, Figure 86, Figure 87, Figure 88 and 

Figure 89 shows the SLD implementation for each vector format. Also using special unit 2 

instruction SLDI I executed. 
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Figure 84: Implementation of SLD unit, input signal generation and “n” signal generation 
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[255:0]

[23:16]

[15:8]

[7:0]

[47:40]

[39:32]

[31:24]

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[119:112]
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Figure 85: Implementation of the SLD unit byte format 
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[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

[151:144]

[143:136]

[135:128]

[175:168]
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[159:152]

[199:192]

[191:184]

[183:176]
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2
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[127:120]
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[143:136]

[135:128]

[175:168]

[167:160]

[159:152]

[199:192]

[191:184]

[183:176]

[223:216]

[215:208]

[207:200]

[231:224]
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Figure 86: Implementation of the SLD unit byte format (cont.) 
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Figure 87: Implementation of the SLD unit halfword format 
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Figure 88: Implementation of the SLD unit word format 
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Figure 89: Implementation of the SLD unit doubleword format 
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16.9 SPLAT unit 

Figure 90 show the implementation of SPLAT unit. It uses module calculated using the circuit 

show in Figure 84. Also SPLATI instruction is calculated using Special unit 2. These 

instruction replicates vector A element with index given by n (GPR module) to all elements 

in vector C. GPR value is interpreted modulo the number of data format df elements in the 

destination vector. The operands and results are values in data format df. 
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Figure 90: SPLAT unit implementation 
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16.10 PCKEV unit 

Figure 91 shows the implementation of PCKEV unit for all 4 vector formats. This unit 

calculates the PCKEV instruction. Even elements in vector A are copied to the left half of 

vector result and even elements in vector B are copied to the right half of vector result. The 

operands and results are values in integer data format df field. 
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Figure 91: PCKEV implementation 
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16.11 PCKOD unit 

Figure 92 shows the implementation of PCKOD unit for all 4 vector formats. This unit 

calculates the PCKOD instruction. Odd elements in vector A are copied to the left half of 

vector result and odd elements in vector B are copied to the right half of vector result. The 

operands and results are values in integer data format df field. 
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Figure 92: PCKOD implementation 
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16.12 ILVL unit 

Figure 93 shows the implementation of ILVL unit for all 4 vector formats. This unit 

calculates the ILVL instruction. The left half elements in vectors A and B are copied to 

vector result alternating one element from A with one element from B. The operands and 

results are values in integer data format df field. 
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Figure 93: ILVL unit implementation 
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16.13 ILVR unit 

Figure 94 shows the implementation of the ILVR unit for all 4 vector formats. This unit 

calculates the ILVR instruction. The right half elements in vectors A and B are copied to 

vector result alternating one element from A with one element from B. The operands and 

results are values in integer data format df field. 
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Figure 94: ILVR unit implementation 
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16.14 ILVEV unit 

Figure 95 shows the implementation of ILVEV unit for all 4 vector formats. This unit 

calculates the ILVEV instruction. Even elements in vectors A and B are copied to vector result 

alternating one element from A with one element from B. The operands and results are 

values in integer data format df field. 
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Figure 95: ILVEV unit implementation 
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16.15 ILVOD unit 

Figure 96 show the implementation of the ILVOD unit for all 4 vector formats. This unit 

executes the instruction ILVOD. Odd elements in vectors A and B are copied to vector result 

alternating one element from A with one element from B. The operands and results are 

values in integer data format df field. 
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Figure 96: Implementation of ILVOD unit 
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16.16 Insert unit 

Figure 97 shows the implementation of unit insert for all 4 formats. This unit is used to 

execute the instruction Insert. This instruction takes a value from the general purpose 

register and insert this value in one element of vector read form port C of the vector register 

file. 
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Figure 97: Implementation of Insert unit 
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16.17 INSVE unit 

Figure 98 shows the implementation of Insve unit. This is similar to insert unit but this one 

takes an element from vector A and insert it on vector C. 
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Figure 98: Implementation of Insve unit 
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16.18 Dot Product unit 

Figure 99, Figure 100 and Figure 101 shows the implementation of dot product unit for 

formats halfword, word and doubleword. Figure 102 shows the multiplexor that choose one 

format result. This unit executes instructions DOTP_S, DOTP_U. DPADD_S, DPADD_U, 

DPSUB_S and DPSUB_U. 
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Figure 99: Implementation of Dotproduct unit for halword format 
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Figure 100: Implementation of Dotproduct for word format 
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Figure 101: Implementation of Dotproduct for doubleword format 
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Figure 102: Selection of results from Dotproduct 
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16.19 Population count unit 

Figure 105 shows the population count unit for all 4 vector formats. This unit executes the 

PNCT instruction. This unit is composed for 16-byte population counter. Figure 103 shows 

how each one is made. Adding some full and half adder we can obtain 16-bit, 32-bit and 64-

bit population counts. An example of 16-bit population count base on 8-bit population 

count is show in Figure 104. 

 

Figure 103: Population counter for a byte. 
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Figure 104: Population counter for a halfword. 

The total number of logic gates for Figure 103 is as follows: 5 * 2 FA + 2 * 9 HA + 2 OR = 30 

logic gates. The design of Figure 103 is for an input of 8-bit. However, we can duplicate the 

number of input bits (i.e., 16-bit) by duplicating the circuit above and adding another layer 

which consists of three FAs and one HA to get an output of 5 bits, as shown below in Figure 

104. 
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Figure 105: Population counter unit 
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16.20 Leading Ones/Zeros unit 

Figure 107 shows the Leading counting unit for all 4 vector formats. This unit executes 

instructions NLOC and NLZC. The leading counting unit is made of leading one counters of 

a byte. One of them is shown in Figure 106. Negating the input we can count zeros instead 

ones.  
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Figure 106: Leading byte counting 
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Figure 107: Leading counting unit 

16.21 Vector Operations unit 

There are 7 instructions (Table 18) that are independent of the vector format. They are 

executed at bit level over the whole vector. Figure 108 shows the circuits used to perform 

these vector operations. These instructions are AND, OR, NOR, XOR, BMNZ, BMZ and BSEL. 

Also using the special unit 2 immediate version of these instructions are executed too (Table 

18). 

Mnemonic Type Description 

AND.V VEC Vector Logical And 

BMNZ.V VEC Vector Bit Move If Not Zero 

BMZ.V VEC Vector Bit Move If Zero 

BSEL.V VEC Vector Bit Select 

NOR.V VEC Vector Logical Negated Or 

OR.V VEC Vector Logical Or 

XOR.V VEC Vector Logical Exclusive Or 
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Mnemonic Type Description 

ANDI.B I8 Immediate Logical And 

BMNZI.B I8 Immediate Bit Move If Not Zero 

BMZI.B I8 Immediate Bit Move If Zero 

BSELI.B I8 Immediate Bit Select 

NORI.B I8 Immediate Logical Negated Or 

ORI.B I8 Immediate Logical Or 

XORI.B I8 Immediate Logical Exclusive Or 
Table 18: Vector instructions 
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Figure 108: Vector operations 
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16.22 SHF unit 

Figure 109 shows the implementation of SHF unit for byte, halfword and word vector 

formats.  This unit executes instruction SHF. The set shuffle instruction works on 4-element 

sets in df data format. All sets are shuffled in the same way: the element i82i+1..2i in A is 

copied over the element i in C, where i is 0, 1, 2, 3. The operands and results are values in 

byte data format. 
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Figure 109: SHF implementation 

16.23 SAT unit 

Figure 110, Figure 111, Figure 112 and Figure 113 shows the implementation of SAT unit for 

all 4 vector formats. This unit executes SAT_S and SAT_U instructions. See Saturated 

Arithmetic for more details. 
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Figure 110: SAT unit implementation for byte format 
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Figure 111: SAT implementation for halfword format 
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Figure 112: SAT implementation for word format 
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Figure 113: SAT implementation for Doubleword format 
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16.24 CEQ unit 

Figure 114 shows the implementation of CEQ unit for all 4 vector formats. This unit executes 

CEQ and CEQI instructions using the special unit 2. CEQ unit set all bits to 1 in vector result 

elements if the corresponding A and B elements are equal, otherwise set all bits to 0. The 

operands and results are values in integer data format df field. 
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Figure 114: Implementation of CEQ unit 
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16.25 CLT unit 

Figure 115 shows the implementation of the CLT unit for all 4 vector formats. Using the 

special unit 2, this unit can execute 4 instructions. They are CLT_S, CLT_U, CLTI_S and 

CLTI_U. CLT unit set all bits to 1 in vector result elements if the corresponding A elements 

are signed/unsigned (depending on signed flag) less than B elements, otherwise set all bits 

to 0. The operands and results are values in integer data format df field. 
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Figure 115: Implementation of CLT unit 

16.26 CLE unit 

Figure 116 shows the implementation of the CLR unit for all 4 vector formats. Using the 

special unit 2, this unit can execute 4 instructions. They are CLE_S, CLE_U, CLEI_S and 

CLEI_U. CLE unit set all bits to 1 in vector result elements if the corresponding A elements 
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are signed/unsigned (depending on signed flag) less than or equal to B elements, otherwise 

set all bits to 0. The operands and results are values in integer data format df field. 
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Figure 116: Implementation of CLE unit 
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16.27 MAX unit 

Figure 117 shows the implementation of the MAX unit for all 4 vector formats. Using the 

special unit 2, this unit can execute 4 instructions. They are MAX_S, MAX_U, MAXI_S and 

MAXI_U. Maximum values between signed elements in vector B and signed/unsigned 

elements in vector A are written to vector result. The operands and results are values in 

integer data format df field. 
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Figure 117: Implementation of MAX unit 
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16.28 MIN unit 

Figure 118 shows the implementation of the MIN unit for all 4 vector formats. Using the 

special unit 2, this unit can execute 4 instructions. They are MIN_S, MIN_U, MINI_S and 

MINI_U. Minimum values between signed elements in vector B and signed elements in 

vector A are written to vector result. The operands and results are values in integer data 

format df field. 
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Figure 118: Implementation of MIN unit 
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16.29 MAX MN unit 

Figure 119, Figure 120 and Figure 121 shows the implementation of the MAX MIN unit for 

all 2 vector formats. This unit uses the absolute values generated in Figure 40. This unit 

calculates instructions MAX_A and MIN_A. The value with the largest magnitude, i.e. 

absolute value, between corresponding signed/unsigned elements in vector A and vector B 

are written to vector result. The minimum negative value representable has the largest 

absolute value. The operands and results are values in integer data format df field. 
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Figure 119: Implementation of MAX MIN unit 
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Figure 120: Implementation of MX MIN unit (cont.) 
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Figure 121: MAX MIN unit implementation (cont.) 
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16.30 SLL unit 

Figure 122 shows the implementation of the SLL unit for all 2 vector formats. Using the 

special unit 2, this unit can execute 4 instructions. They are SLL and SLLI instructions. The 

elements in vector A are shifted left by the number of bits the elements in vector B specify 

modulo the size of the element in bits. The result is written to vector result. The operands 

and results are values in integer data format df field. 
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Figure 122: Implementation of SLL unit 
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16.31 SRA unit 

Figure 123 shows the implementation of the SRA unit for all 4 vector formats. Using the 

special unit 2, this unit can execute 2 instructions. They are SRA and SRAI instructions. The 

elements in vector A are shifted right arithmetic by the number of bits the elements in 

vector B specify modulo the size of the element in bits. The result is written to vector result. 

The operands and results are values in integer data format df field. 
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Figure 123: Implementation of SRA unit 
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16.32 SRL unit 

Figure 124 shows the implementation of the SRL unit for all 4 vector formats. Using the 

special unit 2, this unit can execute 2 instructions. They are SRL and SRLI instructions. The 

elements in vector A are shifted right logical by the number of bits the elements in vector B 

specify modulo the size of the element in bits. The result is written to vector result. The 

operands and results are values in integer data format df field. 
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Figure 124: Implementation of SRL unit 
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16.33 BIT unit 

Figure 125 and Figure 126 shows the implementation of the BIT unit for all 4 vector formats. 

Using the special unit 2, this unit can execute 6 instructions. They are BCLR, BSET, BNEG, 

BCLRI, BSETI and BNEGI. 
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Figure 125: Implementation of BIT unit 
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Figure 126: Implementation of BIT unit (cont.) 
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16.34 BINSL unit 

Figure 127 shows the implementation of BINSL unit for all 4 vector formats. This unit using 

the special unit 2 executes instructions BINSL and BINSLI. To select the output format circuit 

shows in Figure 129 is used. Copy most significant (left) bits in each element of vector A to 

elements in vector C while preserving the least significant (right) bits. The number of bits to 

copy is given by the elements in vector B modulo the size of the element in bits plus 1. The 

operands and results are values in integer data format df field. 
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Figure 127: Implementation of BINSL unit 
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16.35 BINSR unit 

Figure 128 shows the implementation of BINSR unit. This unit using the special unit 2 can 

executes instructions BINSR and BINSRI. To select the output format circuit shows in Figure 

129 is used. Copy least significant (right) bits in each element of vector A to elements in 

vector C while preserving the most significant (left) bits. The number of bits to copy is given 

by the elements in vector B modulo the size of the element in bits plus 1. The operands and 

results are values in integer data format df field. 
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Figure 128: Implementation of BINSR unit 

  



 

 
170 

 

16.36 Join results 

Figure 129 shows the circuit used by almost every unit that chose the output result format. 

Al possible formats are always executes but just only one of them has sense. 
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Figure 129: Result format selection 
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16.37 Branch unit 

 

For branch, MSA uses no global condition flags: compare instructions write the results per 

vector element as all zero or all one bit values. Branch instructions test for zero or not zero 

elements or vector value. Figure 130 shows the layout of branch instructions. Field COP1 is 

decoded by MSA and MIPS32 decoders. Field s16 is used by the MIPS32 core to calculate 

the branch address. Fields OP/DF and wt are used by the SIMD unit to evaluate the branch.  

The branch instruction has a delay slot. s16 is a PC word offset, i.e. signed count of 32-bit or 

64-bit24 instructions, from the PC of the delay slot. Finally the MSA Jump signal is send to 

the MIPS32 control unit to take or not take the branch. 

Mnemonic Type Description 

BNZ.V COP1 Immediate Branch If Not Zero (At Least One Element of Any 
Format Is Not Zero) 

BNZ.df COP1 Immediate Branch If All Elements Are Not Zero 

BZ.df COP1 Immediate Branch If At Least One Element Is Zero 

BZ.V COP1 Immediate Branch If Zero (All Elements of Any Format Are Zero) 

Table 19: SIMD branch instructions 

 

Figure 130: Layout of branch instructions 

                                                           
24 Depending on the MIPS32 or MIPS64 implementaion runninf MSA 
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Figure 131: Branch detection of format Doubleword 
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Figure 132: Branch detection of format Word 
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Figure 133: Branch detection of format Halfword 
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Figure 134: Branch detection of format Byte 
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Figure 135: Format selector of branches 
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