

Instituto Politécnico Nacional

Centro de Investigación en Computación

Laboratorio de Microtecnología y Sistemas Embebidos

Design and Implementation of a Multimedia
Extension for a RISC Processor

TESIS

Que para obtener el grado de:
Maestría en Ciencias en Ingeniería de Cómputo con

Opción en Sistemas Digitales

PRESENTA

Ing. Eduardo Jonathan Martínez Montes

DIRECTORES DE TESIS:

Dr. Oscar Palomar Pérez
Dr. Marco Antonio Ramírez Salinas

Dr. Adrián Cristal Kestelman

México, D.F.

Octubre 2015

ii

iii

INSTITUTO POLITÉCNICO NACIONAL

SECRETARIA DE INVESTIGACIÓN Y POSGRADO

CARTA DE CESIÓN DE DERECHOS

iv

Resumen

Hoy en día, el contenido multimedia está en todas partes. Muchas aplicaciones utilizan

audio, imágenes y vídeo. En los últimos 20 años numerosos avances se han hecho en las

tecnologías de compilación y microarquitectura para mejorar el Instruction-Level

Parallelism (ILP). A medida que aplicaciones cada vez más exigentes han aparecido, una

serie de diferentes microarquitecturas han surgido para afrontar estos nuevos retos. Un

gran número de técnicas microarquitecturales han surgido para tratar con ellos: pipelining,

superscalar, out-of-order, multithreading, etc.

El objetivo primario de todas estas técnicas es aumentan el ILP a nivel de core. Otra

alternativa para incrementar el rendimiento es emplear Data-Level Parallelism (DLP). Esta

técnica incrementa el rendimiento en aplicaciones con operaciones altamente repetitivas.

DLP efectúa la misma operación en múltiples datos. Los primeros procesadores en utilizar

DLP fueron los procesadores vectoriales. La gran mayoría de las implementaciones

modernas emplean vectores pequeños de tamaño fijo e instrucciones orientadas a

multimedia. A este tipo de implementaciones se les conoce típicamente como Single

Instruction Multiple Data (SIMD).

La actual y próxima generación de dispositivos móviles y embebidos requieren de soporte

para aplicaciones multimedia para ser competitivos. La técnica más popular a nivel de micro

arquitectura para hacer frente a estos requisitos es utilizar extensiones multimedia además

del conjunto de instrucciones tradicional. Su alto rendimiento en operaciones de cómputo

además de su hardware simplificado ofrece una gran opción de cara al consumo

energéticamente eficiente. Además, sus unidades funcionales y mecanismos de control

simples hacen posible el escalar a longitudes de vectores mayores sin demasiada

complicación.

MIPS surgió como fruto de una investigación académica y desde entonces ha sido una de

las arquitecturas preferidas para la enseñanza de Arquitectura de Computadoras en las

universidades de todo el mundo. Otras arquitecturas como x86 o ARM resultan ser

demasiado complejas de entender para los estudiantes universitarios no siendo suficiente

un único curso para su total entendimiento.

La gran mayoría de micro arquitecturas populares y comerciales hoy en día poseen de por

lo menos una implementación de una unidad de extensión multimedia, conocidas

simplemente por unidad SIMD. Algunos ejemplos son, x86-64 (MMX, SSE, AVX), PowerPC

(AltiVec), ARM (Neon), MIPS (MDMX, MSA), y así sucesivamente. El presente trabajo se

centra en la micro arquitectura MIPS debido a que sigue la filosofía RISC (Reduced

v

Instruction Set Computer) muy de cerca, lo que es deseable, ya que simplifica en gran

medida la implementación y es fácil de entender por los estudiantes.

La primer implementación SIMD para MIPS fue MIPS Digital Media Extension (MDMX) que

apoyó video, procesamiento de píxeles audio y gráficos mediante la introducción de dos

vectores formatos de números enteros pequeños. Estos vectores tienen una anchura de 64

bits, en forma de signo de 16 bits sin signo u 8 números enteros de 8 bits. MDMX es bastante

antiguo, y nunca llegó a la producción. La más reciente implementación SIMD para MIPS

apareció en 2014 como un add-on de MIPS32 / 64 Release 5. Se llama MIPS SIMD

Architecture (MSA). Está diseñado para apoyar a los vectores de 128 bits de 8, 16, vectores

enteros 32 y 64 bits; Elementos de punto flotante de 16 y 32 bits de punto fijo, o de 32 y 64

bits.

Hemos decidido implementar el MSA ISA en una FPGA, junto con una aplicación MIPS-like

(soft-core). Debido a que MSA no está diseñado para la computación de propósito general

tomamos un núcleo MIPS32 del sitio opencores.org, y lo actualizamos con los elementos

necesarios (instrucciones) del MIPS Release 6, así como la micro arquitectura y las unidades

de control para utilizar el módulo MSA como un coprocesador. Hemos creado además un

banco de pruebas y adaptado algunos micro benchmarks embebidos para probar el

coprocesador MSA.

vi

Abstract

Nowadays, multimedia content is everywhere. Many applications use audio, images, and

video. Over the last 20 years significant advances have been made in compilation and

microarchitecture technologies to improve the instruction-level parallelism (ILP). As more

demanding applications have appeared, a number of different microarchitectures have

emerged to deal with them. A number of microarchitectural techniques have emerged to

deal with them: pipelining, superscalar, out-of-order, multithreading, etc.

All these techniques increase the ILP at core level. An alternative to increase the

performance is to exploit data level parallelism. This technique improves performance in

applications where highly repetitive operations need to be performed. It performs the same

operation on multiple pieces of data. The first approach was vector processors and most

modern implementations use short fixed size vectors in what is known as Single Instruction

Multiple Data (SIMD) extensions.

Present and next generation of mobile and embedded devices require having multimedia

support to be competitive. The most popular technique at the microarchitecture level to

deal with these requirements is to use SIMD extensions to the Instruction Set Architecture.

It improves performance by processing vector operations in parallel. Their high compute

power and hardware simplicity improve overall performance in an energy efficient manner.

Furthermore, their replicated functional units and simple control mechanisms make them

manageable to scaling to higher vector lengths.

MIPS born as an academic research and also it has been the favorite architecture used to

teach Computer Architecture Design. Other architectures as x86 or ARM are quite complex

to understand for university students.

Most popular microarchitectures today have at least a SIMD unit implementation, x86-64

(MMX, SSE, AVX), PowerPC (AltiVec), ARM (Neon), MIPS (MDMX, MSA), and so on. This work

focuses on the MIPS microarchitecture because it follows the RISC (Reduced Instruction Set

Computer) philosophy quite closely, which is desirable since it simplifies implementation

and it is easy to understand by students.

First SIMD implementation for MIPS was MIPS Digital Media Extension (MDMX) that

supported video, audio and graphics pixel processing by introducing two vectors formats of

small integers. These vectors have a width of 64-bits, in the form of signed 16-bit or 8

unsigned 8-bit integers. MDMX is quite old, and it never reached production. Latest SIMD

implementation on MIPS appeared in 2014 as an add-on of MIPS32/64 Release 5. It is called

MIPS SIMD Architecture (MSA). It is designed to support 128-bit vectors of 8, 16, 32 and 64-

bit integer vectors; 16 and 32-bit fixed-point, or 32 and 64-bit floating-point elements.

vii

We have decided to implement the MSA ISA on an FPGA together with a MIPS-like

implementation (soft-core). Since it is not intended for general purpose computing we take

a MIPS32 core from opencores.org, upgraded it with the needed MIPS Release 6

instructions, microarchitecture and control to use MSA coprocessor. We have created a

MSA coprocessor, a testing bench and adapted some embedded micro benchmarks to test

the MSA coprocessor.

viii

To my parents and my sister for their support during all these years

To Oscar, my advisor, for his patience and all his support

ix

Acknowledgements

I am very thankful to everyone who supported me for this project and gives their guidance

to complete my thesis work effectively and moreover on time.

I feel immensely proud in extending my heartiest thanks to the Barcelona Supercomputing

Center and all staff members. They have been a source of inspiration for me and their

experience and knowledge have helped me in learning and giving this project the shape it

has assumed.

I would like to thank www.wikipedia.com, www.github.com and www.stackoverflow.com

whose communities freely provided me with tools, knowledge and support that I could only

have otherwise acquired by sinking more money and time into overpriced books, articles

and further schooling. Also, I would like to thank to Naruto Uzumaki to learn me to never

give up, no matter what.

Finally, I would like to thank my academic mentors. I would like to mention who I consider

the greatest Oscar Palomar, who told me he would like to be my adviser. If I had been in his

position, I would’ve never risked it on so little information, but I’m glad he did… because it

was awesome.

They all kept me going.

This document was presented at Universitat Politècnica de Catalunya – BarcelonaTech

under the same title. In the Master in Innovation and Research in Informatics (MIRI-HPC). It

is the first master thesis produced by the cooperation between UPC and IPN. The original

document is available at UPCommons URI: http://hdl.handle.net/2117/77814

1

Contents

CARTA DE CESIÓN DE DERECHOS ..iii

Resumen .. iv

Abstract ... vi

Acknowledgements ... ix

Contents .. 1

List of Figures .. 5

List of Tables .. 9

Glossary ... 10

1 Introduction .. 11

1.1 Motivation ... 11

1.2 Context of the project ... 14

1.3 Objectives .. 15

2 State of the Art .. 16

2.1 Origin ... 16

2.2 Parallelism key of performance .. 16

2.3 Vector Architectures ... 18

2.4 SIMD Multimedia extension .. 18

2.5 Graphics Processing Units ... 20

2.6 SIMD History .. 21

3 MIPS Architecture ... 23

3.1 Brief History of MIPS Company ... 23

3.2 History of the MIPS ISA ... 23

3.3 Current MIPS ISA ... 24

3.4 Optional Components ... 26

3.5 Brief description of the optional components available on Release 6 27

4 The MIPS® SIMD Architecture module.. 29

4.1 Instruction Decoding and Formats .. 30

4.2 GCC support .. 33

2

5 Tools and resources .. 36

5.1 Verilog ... 36

5.2 Quartus II ... 36

5.3 DE2-115 board ... 36

6 Basic components ... 37

6.1 Adder ... 37

6.1.1 Ripple Carry Adder .. 38

6.1.2 Carry Look-ahead Adder .. 39

6.1.3 Kogge-Stone Adder.. 40

6.1.4 Adder evaluation ... 41

6.2 Multiplier ... 42

6.3 Divider ... 44

6.4 Multiplexer .. 45

6.5 Saturated Arithmetic ... 45

7 The MIPS SIMD Architecture Instruction Set .. 47

7.1.1 Data Transfer ... 47

7.1.2 Arithmetic .. 49

7.1.3 Comparison ... 51

7.1.4 Logical and Shift .. 52

7.1.5 Unpack and Shuffle ... 53

7.1.6 Insertion and Extraction .. 54

8 Architecture Implementation ... 54

8.1 Overview ... 54

8.2 MIPS32 core .. 55

8.3 Fetch .. 57

8.4 Decode .. 59

8.5 Register File ... 59

9 SIMD execution stage .. 62

9.1 Vector Processing Unit .. 62

9.2 Multipurpose adder lane ... 64

9.3 Multiplier lane ... 65

9.4 Divider circuit .. 66

9.5 Special unit 1 ... 70

3

9.6 Special unit 2 ... 70

9.7 Special unit 3 ... 71

10 Memory ... 72

10.1 Instruction Memory .. 73

10.2 Data Memory .. 74

11 Software Tools ... 78

11.1 GCC .. 78

11.2 QEMU .. 80

11.3 ModelSim .. 80

12 Evaluation .. 84

12.1 FPGA utilization ... 84

12.2 Benchmarks ... 84

12.2.1 FDCT .. 85

12.2.2 Matmult ... 86

12.3 Summary ... 87

13 Future work ... 88

14 Conclusions ... 89

15 References ... 90

16 Annexes ... 94

16.1 Joining results from 3R lanes... 94

16.2 Detail Implementation of Special 1 unit ... 95

16.3 Detail implementation of Special 2 unit .. 98

16.4 Detail implementation of Special 3 unit .. 100

16.5 VSHF unit ... 102

16.6 SRLR unit .. 107

16.7 SRAR unit ... 112

16.8 SLD unit ... 117

16.9 SPLAT unit .. 124

16.10 PCKEV unit ... 125

16.11 PCKOD unit .. 126

16.12 ILVL unit ... 127

16.13 ILVR unit .. 128

16.14 ILVEV unit .. 129

4

16.15 ILVOD unit ... 130

16.16 Insert unit .. 131

16.17 INSVE unit .. 132

16.18 Dot Product unit .. 133

16.19 Population count unit .. 137

16.20 Leading Ones/Zeros unit ... 140

16.21 Vector Operations unit .. 141

16.22 SHF unit ... 143

16.23 SAT unit ... 145

16.24 CEQ unit ... 148

16.25 CLT unit .. 150

16.26 CLE unit .. 151

16.27 MAX unit .. 153

16.28 MIN unit .. 155

16.29 MAX MN unit ... 157

16.30 SLL unit .. 160

16.31 SRA unit ... 162

16.32 SRL unit .. 164

16.33 BIT unit .. 166

16.34 BINSL unit .. 168

16.35 BINSR unit .. 169

16.36 Join results ... 170

16.37 Branch unit .. 171

5

List of Figures

Figure 1: 35 years of microprocessor trend data (6) ... 13

Figure 2: Example of a SIMD parallel addition .. 19

Figure 3: Dynamic Power .. 20

Figure 4: MIPS32/64 Releases and optional modules (39) ... 26

Figure 5: Optional components supported by MIPS32 and MIP64 (40) ... 27

Figure 6: MSA formats ... 30

Figure 7: Data format and element index field encoding ... 33

Figure 8: Data format and bit index field encoding .. 33

Figure 9: GCC compilation using MSA ... 34

Figure 10: Linker script example. .. 34

Figure 11: Example for addition of two integer arrays ... 35

Figure 12: One-bit full adder implementation .. 37

Figure 13: One-bit full adder block ... 38

Figure 14: 4-bit ripple carry adder .. 38

Figure 15: 4-bit carry look-ahead adder .. 39

Figure 16: Boolean equations used in 4-bit carry look-ahead adder .. 39

Figure 17: 4-bit Kogge-Stone Adder .. 40

Figure 18: Carry operator .. 41

Figure 19: Boolean equations involved in Kogge-Stone adder ... 41

Figure 20: formula of Karatsuba algorithm ... 42

Figure 21: The circuit to perform Karatsuba multiplication .. 42

Figure 22: The overlap circuit for the 8-bit Karatsuba multiplier ... 43

Figure 23: Numerical example of Karatsuba multiplier using base 16.. 43

Figure 24: Alternative division algorithm .. 44

Figure 25: Multiplexer 4-to 1 of 128-bit width.. 45

Figure 26: Boolean equation for a 4-to 1 multiplexer ... 45

Figure 27: 8-bit signed integer subtraction using wraparound and saturated arithmetic 46

Figure 28: 8-bit unsigned integer addition using wraparound and saturated arithmetic 46

Figure 29: Interconnection between MIPS32 Core and MSA unit (control signals omitted) 49

Figure 30: Modifications made to the main core to attach SIMD unit ... 56

Figure 31: Interconnection between core and coprocessor ... 58

Figure 32: Signals generated by SIMD decode .. 59

Figure 33: Representation of the MSA register file... 60

Figure 34: Implementation of the MSA register file ... 61

Figure 35: SIMD execution stage ... 62

Figure 36: Four lanes (left) vs two lanes (right) .. 63

Figure 37: Multipurpose adder lane .. 64

Figure 38: Multiplication circuit and fused multiplication .. 66

Figure 39: Divider circuit ... 67

Figure 40: 3R Lane, multiplier, divider, adder and substrate multipurpose 69

Figure 41: Special unit 1 .. 70

Figure 42: Special unit 2 .. 71

6

Figure 43: Special unit 3 .. 71

Figure 44: Instruction and data memory .. 73

Figure 45: Example of row and memory cell calculation .. 74

Figure 46: Multiplexors used to rearrange the data to load and store it into the data memory 75

Figure 47: Logical circuit that creates the 16 write enable signals and multiplexor used to rearrange

the write enable mask. .. 76

Figure 48: Calculation of rows for each memory cell .. 77

Figure 49: Compiler flags to enable SIMD ... 78

Figure 50: File script.ld .. 78

Figure 51: File startup.S ... 79

Figure 52: Makefile .. 79

Figure 53: Fragment of a decompile file using CodeBench ... 80

Figure 54: Example of waveforms generated by ModelSim ... 81

Figure 55: Memory visualization in ModelSim .. 81

Figure 56: Example of instrumentation code .. 82

Figure 57: A segment of a trace execution from the VPU... 83

Figure 58: FDCT Benchmark results .. 85

Figure 59: Matmult Benchmark results ... 86

Figure 60: Superscalar processor .. 88

Figure 61: Selector of vector result format ... 94

Figure 62: Implementation of special unit 1 ... 95

Figure 63: Implementation of special unit 1 (cont.) .. 96

Figure 64: Joining result of special unit 1 .. 97

Figure 65: Implementation of the special unit 2 ... 98

Figure 66: Result of the special unit 2 ... 99

Figure 67: Implementation of special unit 3 ... 100

Figure 68: Result of special unit 3 ... 101

Figure 69: VSHF unit .. 102

Figure 70: Implementation of VSHF unit Byte format .. 103

Figure 71: Implementation of the VSHF unit Halfword format .. 104

Figure 72: Implementation of the VSHF unit Word format .. 105

Figure 73: Implementation of the VSHF unit Doubleword format ... 106

Figure 74: SRLR unit... 107

Figure 75: Implementation of the SRLR unit byte format ... 108

Figure 76: Implementation of the SRLR unit halfword format ... 109

Figure 77: Implementation of the SRLR unit word format .. 110

Figure 78: Implementation of the SRLR unit doubleword format .. 111

Figure 79: SRAR unit .. 112

Figure 80: Implementation of the SRAR unit byte format .. 113

Figure 81: Implementation of the SRAR unit halfword format ... 114

Figure 82: Implementation of SRAR unit word format ... 115

Figure 83: Implementation of the SRAR unit doubleword format .. 116

Figure 84: Implementation of SLD unit, input signal generation and “n” signal generation 118

Figure 85: Implementation of the SLD unit byte format ... 119

7

Figure 86: Implementation of the SLD unit byte format (cont.) ... 120

Figure 87: Implementation of the SLD unit halfword format ... 121

Figure 88: Implementation of the SLD unit word format ... 122

Figure 89: Implementation of the SLD unit doubleword format .. 123

Figure 90: SPLAT unit implementation .. 124

Figure 91: PCKEV implementation .. 125

Figure 92: PCKOD implementation ... 126

Figure 93: ILVL unit implementation ... 127

Figure 94: ILVR unit implementation .. 128

Figure 95: ILVEV unit implementation .. 129

Figure 96: Implementation of ILVOD unit ... 130

Figure 97: Implementation of Insert unit .. 131

Figure 98: Implementation of Insve unit ... 132

Figure 99: Implementation of Dotproduct unit for halword format... 133

Figure 100: Implementation of Dotproduct for word format ... 134

Figure 101: Implementation of Dotproduct for doubleword format ... 135

Figure 102: Selection of results from Dotproduct... 136

Figure 103: Population counter for a byte. ... 137

Figure 104: Population counter for a halfword. .. 138

Figure 105: Population counter unit ... 139

Figure 106: Leading byte counting .. 140

Figure 107: Leading counting unit ... 141

Figure 108: Vector operations ... 142

Figure 109: SHF implementation ... 145

Figure 110: SAT unit implementation for byte format .. 145

Figure 111: SAT implementation for halfword format.. 146

Figure 112: SAT implementation for word format .. 146

Figure 113: SAT implementation for Doubleword format .. 147

Figure 114: Implementation of CEQ unit .. 149

Figure 115: Implementation of CLT unit ... 151

Figure 116: Implementation of CLE unit ... 152

Figure 117: Implementation of MAX unit ... 154

Figure 118: Implementation of MIN unit .. 156

Figure 119: Implementation of MAX MIN unit ... 157

Figure 120: Implementation of MX MIN unit (cont.) .. 158

Figure 121: MAX MIN unit implementation (cont.) .. 159

Figure 122: Implementation of SLL unit .. 161

Figure 123: Implementation of SRA unit ... 163

Figure 124: Implementation of SRL unit ... 165

Figure 125: Implementation of BIT unit .. 166

Figure 126: Implementation of BIT unit (cont.) .. 167

Figure 127: Implementation of BINSL unit .. 168

Figure 128: Implementation of BINSR unit ... 169

Figure 129: Result format selection .. 170

8

Figure 130: Layout of branch instructions .. 171

Figure 131: Branch detection of format Doubleword ... 172

Figure 132: Branch detection of format Word .. 172

Figure 133: Branch detection of format Halfword .. 173

Figure 134: Branch detection of format Byte ... 173

Figure 135: Format selector of branches .. 174

9

List of Tables

Table 1: Summary of SIMD implementations on PC ... 22

Table 2: Supported formats by MSA ... 29

Table 3: Decode of instructions .. 31

Table 4: Adder performance evaluation ... 41

Table 5: Range Limits for Saturated Arithmetic .. 46

Table 6: Data transfer instructions in MSA ... 48

Table 7: Arithmetic instructions in MSA ... 51

Table 8: Comparison instructions in MSA ... 52

Table 9: Logical and shift instructions in MSA... 53

Table 10: Insertion and extraction instructions in MSA .. 54

Table 11: Instructions introduced to MIPS32 core to support SIMD unit. .. 56

Table 12: Instructions that uses multipurpose adder lane. .. 65

Table 13: Instructions that use Multiplication circuit ... 66

Table 14: Instructions that uses divided circuit .. 68

Table 15: Resources of the implementation ... 84

Table 16: FDCT Benchmark results, total speedup of using SIMD is 4.05x 85

Table 17: Matmult Benchmark results, total speedup of using SIMD is 2.68x 86

Table 18: Vector instructions .. 142

Table 19: SIMD branch instructions .. 171

10

Glossary

adder .. 37, 38, 39, 40, 41, 64, 65, 68, 69, 137
Divider ... 44, 66, 67
DLP..13, 14, 16, 17, 20, 89
Floating Point .. 23, 44, 62
FPGA .. v, vii, 15, 36, 37, 41, 42, 60, 65, 72, 73, 78, 84
GPUs .. 16, 17, 20, 21
ILP ... iv, vi, 11, 13, 16, 17, 20, 89
ISA .. v, vii, 11, 13, 14, 15, 23, 24, 26, 30, 44, 55, 78, 84
Memory ... 72
MIMD .. 17, 20
MIPS .. iv, v, vi, vii, 11, 14, 15, 21, 23, 24, 25, 26, 27, 28, 29, 30, 33, 45, 47, 48, 54, 55, 57, 72, 78, 79,

80, 84, 88
MIPS SIMD Architecture ... v, vi, 14, 28, 29, 33, 45, 47, 54, 55, 72, 78, 88
MISD .. 17
ModelSim .. 36, 79, 80, 81
OoO ... 11, 12, 13, 54
Quartus .. 36, 41, 45, 60, 80
SIMD .. iv, v, vi, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 28, 29, 33, 34, 44, 45, 47, 48, 54, 55, 56, 57,

59, 62, 63, 64, 72, 73, 74, 78, 80, 84, 85, 86, 87, 88, 89, 171
SISD .. 17
TLP ... 16, 17, 89
Vector 16, 18, 20, 22, 29, 34, 35, 48, 50, 51, 52, 53, 54, 56, 62, 66, 68, 102, 141, 142
Verilog ... 15, 36, 60, 80
VHDL .. 36, 80
VLIW .. 11

11

1 Introduction

1.1 Motivation

One of the main objectives of computer architecture is to keep improving performance.

Many different microarchitectural techniques have appeared to try to extract and exploit

parallelism from sequential applications at run time. From the beginning of the age of circuit

integration the number in each generation of transistors available per die has doubled

approximately every two years (1). It means that computer architectures have more

resources available on the design for the new microarchitectural techniques.

The first approach to extract parallelism was trying to execute more than one instruction at

the same time. This concept is call instruction-level parallelism (ILP). ILP started by

overlapping execution of instructions in time-sliced fashion (pipeline). It allows to have

ideally as many instructions in execution as total pipeline stages. Implementation examples

are Intel 80486 and MIPS R2000.

Next approach was focused on executing multiple instruction at the same time. It was

achieved by incrementing the number of functional units and dispatching multiple

instructions per cycle. There are two techniques based on this concept. Superscalar and

Very Long Instruction Word (VLIW). The main difference between them is the complexity of

their control unit. Superscalar decides at run time which instructions are dispatched

together meanwhile VLIW requires explicitly encoded dispatch, controlled by the

programmer. Early, superscalar implementation examples are Intel i960 and Motorola

MC88100. Early VLIW examples are Intel i860 and Elbrus 2000.

Important academic research in the 80s on restricted form of data flow (2), and other

techniques like register renaming (that breaks false dependencies) and introducing a

dynamic executing scheduler unit, facilitated out-of-order (OoO) execution. Main benefit of

OoO comes from the possibility of avoiding idle processor due to instructions that are

waiting for source operands to be calculated by older instructions. On the late 90s out-of-

order (OoO) microarchitectures became popular due to the huge performance

improvement they provide. Examples of OoO designs are Intel Pentium Pro, MIPS R1000

and DEC Alpha 21264.

Pipelining, superscalar and OoO techniques do not require any programmer intervention to

run. Nevertheless, they improve performance when they are applied. Another example of

techniques that are hidden from the programmer or not expose to the Instruction Set

Architecture (ISA) are branch prediction and cache hierarchy. This characteristic allows

backward and forward application compatibility. On the other hand, VLIW exposes many

microarchitectural features to the ISA than makes almost impossible (without recompiling)

to use applications from one generation to another one.

12

One important challenge of OoO is finding enough parallelism. Performance results and

trends are expressed in terms of issue width and windows size. Increasing the size of the

instruction window is a straightforward solution to find parallelism at the instruction

stream. A larger window is required for finding more independent instructions to take

advantage of wider issue. The issue window logic is one of the primary contributors of

complexity in typical out-of-order microarchitectures. The complexity and size of the

structures of the microarchitecture necessary to implement OoO execution grows

quadratically respect to the size of the issue window. Furthermore, each of the components

shows a linear increase respect to the issue width (3).

Designers decided to allow the execution of more than one thread (typically two) to

increase parallelism. Instructions from different threads are independent by definition. This

is called Multi-threading. It requires minimal changes at the architectural level to be

implemented but the programmer must provide at least two threads to exploit this feature.

Examples of this design are Intel Pentium IV HT and IBM Power5.

At mid-2000, maximum single thread performance was achieved. Energy consumption and

heat dissipation became very hard to manage because of power density (4). This is known

as the power wall. Figure 1 shows several trends associated with Moore's law evolution.

However, the number of transistors is still increasing. Designers started to put more than

one core in the same die and Multicore processors appeared. One of the main benefits is

that multicore allow higher performance at lower energy than single core processors with

the same performance. An important drawback of multicores is programmability. It is very

difficult to create applications that can keep all cores busy. This problem is described by

Amdahl’s Law (5). Examples of multicore architecture are AMD Athlon 64, Intel Core Duo

and IBM Power5.

13

Figure 1: 35 years of microprocessor trend data (6)

The number of cores has not stopped to increase. Nowadays, there are processors that have

a huge number of cores. They are called many-cores and examples of this design are

Calvium’s Thunder X (48 cores) (7) and Intel Xeon Phi (61 cores) (8).

Pipeline, superscalar, and OoO microarchitectures techniques are focused on exploiting

Instruction Level Parallelism (ILP). Another different approach to exploit parallelism is called

Data-Level Parallelism (DLP). The idea behind DLP is using a single instruction to launch

many data operations. Examples of vector architectures techniques that exploit DLP are

vector architectures and what is known as Single Instruction Multiple Data (SIMD)

extensions.

As multimedia applications became popular, data to be processed increased and real-time

processing graphics were needed as well. Computer architectures incorporated special

hardware units to deal with these new multimedia issues. The designers introduced to

personal computers (9) SIMD extensions to the ISA, an alternative to vector architectures

for exploiting DLP. The main difference between them is that vector architectures process

the elements of the vector operands in a pipelined fashion, one or a few per cycle, while

SIMD instructions process all the elements of the operands at once. Moreover, vector

14

architecture supports a variable number of data operands per operation meanwhile SIMD

has a fixed number of data operands.

The integration of SIMD units on the processors has exposed a new challenge. The

programmer (compiler) has to be capable to detect DLP and generate SIMD operations.

Code optimizations play an important role in performance.

Early SIMD implementations could perform integer instructions and elements were small

(8-bit and 16-bit). SIMD extensions have been increasing its performance and functionality

from generation to generation. SIMD width vector has increased from 64-bit to 512-bit.

SIMD floating-point data types, single and double precision appeared (10).

Nowadays, all processors have a multimedia extension (or SIMD unit), and since it can

perform floating-point operations computer architectures avoid the implementation of FPU

and these operations are performed by the SIMD unit as special case in which the data is

considered as a one-dimensional vector. Additionally, it has to be considered that the x86-

64 ISA has more SIMD instructions than general-purpose instructions (11).

1.2 Context of the project

Most popular architectures1 currently have at least a SIMD unit implementation, x86-64

(MMX, SSE, AVX), PowerPC (AltiVec), ARM (Neon), MIPS (MDMX, MSA), and so on. MIPS

was born as an academic research and it is used to teach Computer Architecture Design.

Other architectures as x86 or ARM are quite complex to understand for university students

and also, their internal architecture has not been disclosed, thus many important

implementation details are unknown.

MIPS architecture follows RISC (Reduced Instruction Set Computer) philosophy. RISC means

regular ISA, as well. A regular ISA allows to have simple instruction decode. Since no-

complex instructions are used by RISC, the microarchitecture2 implementation becomes

simple by avoiding to use complex circuits to solve complex instructions or splitting complex

instructions into microcode. MIPS original design was published in “Computer Architecture:

A Quantitative Approach”. Because of that, there are many MIPS-like implementations

done by academic circles. This thesis is focused on the MIPS architecture because it follows

the RISC philosophy to a greater extent than others architectures.

The last SIMD implementation is called MIPS SIMD Architecture (MSA) and was launched

the last year on April. At the moment the present work started there was not any public

1 Architecture describes the capabilities and programming model but not a particular implementation,
sometimes refers as the ISA.
2 Microarchitecture is the way a given instruction set architecture (ISA) is implemented on a processor.

15

soft-core implementation. HPCA (12) decided to implement MIPS SIMD Architecture on a

FPGA.

These statements were stablished because this SIMD unit is supposed to be part of a bigger

project at IP-CIC is composed of many smaller projects like this (13). The idea is to provide

a System on Chip (SoC) designed for education. It should be used to help in processor

architecture lectures, develop university projects, etc.

This project is based on an ISA compatible with MIPS32/64 Release 6. It is developed using

Verilog which is a popular Hardware Description Language (HDL).

To validate the implementation, we used a soft-core MIP32 implementation from

opencores.org and some micro benchmarks for embedded architectures compiled with

GCC.

1.3 Objectives

The main goal of this project is to create a SIMD unit based on three statements:

 To provide a SIMD unit as a MIPS coprocessor.

 To implement it as a soft-core optimize it for FPGAs.

 To have clean code and well documented, in order to be easy to understand and

modify.

Secondary objectives are:

 To provide a test bench tool to test and debug.

 To provide some benchmarks to validate executions and measure performance.

16

2 State of the Art

2.1 Origin

From the beginning of microprocessors computer architects and designers have been

fighting to keep improving performance from generation to generation. This has been

possible by doubling the number of transistors approximately every two years. This

continuous improvement is called Moore´s Law (1). The typical increase in transistor density

enables designers to introduce new microarchitectural techniques to achieve higher

performance levels. An example of this continuous improvement is the Tick-Tock model

from Intel (14).

2.2 Parallelism key of performance

Nowadays, parallelism is used at multiple levels from the microarchitecture to the nodes,

with energy and cost being the primary constrains. Parallelism can be classified in three

types (15):

 Instruction-Level Parallelism (ILP), is focused on executing more than one instruction

in parallel or overlapping instruction execution. Some microarchitectural techniques

that exploit ILP are pipelining, superscalar and out-of-order. A modest level of data-

level parallelism is achieved.

 Data-Level Parallelism (DLP) focuses on operating multiple data items at the same

time. Some microarchitectural techniques that exploit DLP are Vector Architectures,

SIMD extensions and Graphic Processor Units (GPUs).

 Thread-Level Parallelism (TLP) focuses on operating tasks of work (like threads3) in

parallel that are independent. Some microarchitectural techniques that exploit TLP

are hyper-threading, multicore and many-core.

ILP exploits implicit parallel operations within a loop or straight-line code segment. TLP is

focused on splitting program into independent tasks. Philosophies like divide-and conquer

are used. TLP explicitly represented by the use of multiple threads of execution that are

inherently parallel. TLP could be more cost-effective to exploit than ILP. DLP energy cost

grows linear with respect to ILP. GPUs have a large energy efficiency advantage with respect

to ILP or DLP. GPUs are designed to exploit high levels of data and thread level parallelism

for performance rather than extracting ILP from a small number of threads (16).

3 Thread: process with own instructions, data and PC. It may be a subpart of a parallel program or it may be
and independent program.

17

These previous schemes for hardware to provide the support to data-level parallelism and

task-level parallelism are not at all new. Michael Flynn classified all computers in four

groups (17):

 Single instruction stream, single data stream (SISD). This classification is the classic

uniprocessor. From the point of view of the programmer, instructions are executed

sequentially. Although ILP can be exploited, for example with superscalar and

speculative execution.

 Single instruction stream, multiple data streams (SIMD). This classification describes

computers that execute the same instruction on multiple processors simultaneously

(but not necessarily concurrently) using different data streams. SIMD exploits DLP

by applying the same operation to multiple items of data in parallel. There are three

different architectures that exploit DLP: vector architectures, multimedia extensions

and GPUs4.

 Multiple instructions streams, single data stream (MISD). This is rarely used. Some

computers implement it for reliability. Systems that require high fault tolerance like

aircraft use heterogeneous systems that operate on the same data stream and

results must match or alternately, the value result is chosen by a “two of three” vote.

If all copies of the output are not identical, then an error has occurred (18).

 Multiple instruction streams, multiple data streams (MIMD). This classification

describes multicore computers. Each general processor (or core if they are in the

same die) fetches its own instructions and operates on its own data. MIMD exploits

mainly TLP. Examples are distributed systems and multicore processors.

4 Although GPUs like to call their model Single Instruction, Multiple Threads (SIMT) for Multiple Thread.

18

2.3 Vector Architectures

Vector architectures take streams of data operands from memory (load), place them into

large, register files, operate on them sequentially in those register files, and then send the

result streams back to memory (store). It is done pretty much in the RISC style. Also, vector

architectures implement a pipeline that stretched from memory, through the processor,

and back to memory is very long and takes many clock cycles to fill, but once it is filled, the

throughput was tremendous. Vector-length is variable and it is set using a vector-length

register (VLR)5.

The first two vector supercomputers appeared in the early 1970s. One was the Texas

Instrument-ASC and the other was the STAR-100 developed by Control Data Corporation

(CDC) (19). With the introduction of the CRAY-1 in 1976 vector supercomputing became

successful. CRAY-1 was followed by the CRAY-2 and then by CRAY X-MP. The STAR-100 was

followed by the Cyber 200 series and then ETA-10.

Vector processors can greatly improve performance on certain workloads, notably

numerical simulations and similar task. Vector processor do not benefit from executing

scalar operations. Bandwidth and probably register space could be wasted. Nevertheless,

performance should be similar to a scalar processor6.

In the early 90s by the continuous increasing of the number of transistors that could be fit

in a single die. Improvements in CMOS VLSI technology that allowed to break the 100MHz

barrier. Microprocessors like DEC Alpha surpassed the cycle times of the fastest

supercomputers of that age (19). The introduction of fast microprocessors substantially

changed the supercomputer market. Due to their much higher volumes, microprocessors

offer very low prices per processor.

The idea of building supercomputers using many of these processors spread swiftly as a

consequence of their cheaper cost and powerful. Nowadays supercomputers are made

mainly using commodity parts (20).

2.4 SIMD Multimedia extension

Multimedia applications uses narrow data-types, typical widths of data are 8-bit and 16-bit,

for instance, for graphic representation of each of the three primary colors plus 8 bits for

transparency; or audio samples are also typically represented with 8 or 16 bits. SIMD

extensions allow performing the same operation on a group of elements in parallel.

Both, SIMD extensions and Vector processors operate using vectors. Vector processors can

deal with vectors of variable size and SIMD extensions operates always in vectors of fixed

5 The exception is the STAR-100, which operated directly from memory. It did not have a vector register file.
6 CRAY-I (1976) was capable of much higher scalar performance than any of its contemporaries (19).

19

size, it is usually called packed operand. The main difference between them is the execution

model, SIMD extensions execute the whole packed operand (vector) in parallel (or mostly

in parallel)7 whereas vector processors uses a pipe line execution that process element by

element (or a few of them) in a RISC style .

This difference in philosophy stems from the fact that the original reason for modern SIMD

instruction sets was to speed up multimedia applications and games rather than scientific

computing. Because of this implementation (and philosophical) difference, the term

“vector” usually refers to vectors of many elements, while “SIMD” usually refers to vectors

of a few elements (21).

Figure 2 shows an example of an instruction for a SIMD operation, it is shown schematically

how a sum of two vectors is done 𝐶 = 𝐴 + �⃗⃗�. The sum is performed element to element

and is executed as a vector sum as well. In contrast, for vector architectures, which offers

elegant instruction set that is intended to be the target of a vectorizing compiler, SIMD

extensions have three major omissions:

 Multimedia SIMD extensions fix the number of data operands in the opcode.

 Multimedia SIMD usually does not support the sophisticated addressing modes of

vector architectures, like stride accesses and gather-scatter accesses8.

 Multimedia SIMD usually does not offer mask registers to support conditional

execution of elements as in vector architectures9.

B[2]B[3] B[1] B[0]

A[2] A[1] A[0]

+ + + +

A[3]

C[2]C[3] C[1] C[0]

Figure 2: Example of a SIMD parallel addition

7 It depends on the number and symmetric of lanes implemented.
8 This limitation is being addressed with the newest SIMD extensions from Intel: AVX2 added support for
gather and AVX-512 will include support for gather and scatter.
9 AVX-512 instructions support 8 opmask registers. Seven of them provide conditional execution and
efficient merging of data elements (62).

20

Usually the SIMD unit is composed of individual sub-units: a float-point unit, an

integer/logical unit and a shuffle unit. Moreover, each unit is further divided into lanes. A

lane is the minimum building block of a vector. A SIMD unit can be built just by putting next

to each other multiple copies of the same lane. Integer lanes are almost identical to the ALU

hardware and floating-point lanes are very similar to the FPU hardware. It is useful because

is possible to reuse components. The drawback is that lanes have to be designed to support

operating with different size, typically 8, 16, 32 and 64-bit.

One advantage of SIMD is that typically the latency of each SIMD instruction is the same as

the corresponding scalar operation. It is due to SIMD have an ALU (Lane) for each element.

Moreover, power consumption on SIMD grows linearly because frequency and voltage do

not need to change. Figure 3 shows the Dynamic power equation. By increasing the number

of ALU or Lanes, capacitance increases too.

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =∝ 𝐶𝐿𝑉
2𝑓

Where

P=power

∝=activity factor

C=capacitance

V=voltage

f=frequency

Figure 3: Dynamic Power

2.5 Graphics Processing Units

The GPU is a multiprocessor composed of multithreaded SIMD processors10. Multithreaded

SIMD processors are similar to a Vector Processors, but they have many parallel functional

units instead of a few that are deeply pipelined, as vector processors have. SIMD processors

are full processors with separate PCs and are programmed using threads. Each SIMD

processor is composed of a set of lanes. These lanes are quite similar to the lanes used by

SIMD multimedia extensions.

The multiple SIMD processors in a GPU act as independent MIMD cores, just as many vector

computers have multiple vector processors. The main difference between GPU and vector

processors is multithreading, which is fundamental to GPUs and is missing from most vector

processors. Nevertheless, this is not a rule. There are Vector processors that exploit

multithreading by merging ILP and DLP (22). Multithreading in GPUs is used to hide DRAM

latency (15).

10 SIMD processor: a processor focused on perform SIMD operations, also called stream processors.

21

GPUs introduced a new parallel execution model called Single Instruction, Multiple Thread

(SIMT) (23). Here multithreading is simulated by SIMD processors. Each processor has

multiple threads (called work-items), which execute in lock-step, and are analogous to SIMD

lanes. The main benefit from SIMT is to reduce instruction fetching overhead (24).

2.6 SIMD History

Nowadays almost every processor includes a SIMD unit, common examples of this are

computers, tablets, smartphones, and videogames. Before the mid-90s personal computers

(PCs) became popular, where Intel was one of the pioneers to introduce SIMD technology

to PCs with this, when Intel tried to increase the performance of multimedia applications.

Table 1 shows a brief summary (not exhaustive) of the last 20 years of SIMD

implementations.

Year Description

1994 Hewlett-Packard introduced the “Multimedia Acceleration eXtensions”
(MAX). It was 64-bit wide (25).

1995 Sun Microsystems introduced the “Visual Instruction Set” (VIS). It was used
by SPARC processors. It was 64-bit wide (26).

1996 Intel launched the MMX. This unit was not so popular due to its technical
limitations. The original name was supposed to be “Sub-word Parallelism” but
marketing team decided to change it. MMX shared registers with the FPU. It
was 64-bit wide. (9).

1996 MIPS Technologies developed its own SIMD implementation. It was called
“MIPS Digital Media eXtension” (MDMX). It was pretended to be launched as
coprocessor of MIPS-V instruction set. Unfortunately, MIPS-V was never
launched neither MDMX. It was 64-bit wide and share registers with the FPU
(27).

1997 AIM (Apple, IBM and Motorola) introduced the AltiVec instruction set on its
G3 processors. It was 128-bit wide and supported SIMD floating-point
operations (28).

1999 Intel developed a new SIMD implementation called “Streaming SIMD
Extension” (SSE). It doubled the size of the register respect MMX from 64-bit
to 128-bit wide. Also SSE introduced support to perform floating-point
operations of single-precision. SSE were more popular than MMX (10).

2000 AMD launched its own SIMD implementation called 3DNow! that was similar
to SSE. Because AMD market was relatively small and 3DNow! was
implemented only in AMD processors, 3DNow! was not popular. 3DNow!
shared registers with the FPU.

2002 Intel released the next generation of SSE (SSE2). It fixed many problems with
previous implementation and introduced support to perform double-
precision floating-point operations. It was launched with the Pentium IV and
became very popular (29).

22

Year Description

2004 Intel launched SSE3. It introduced 13 new instructions over SSE2 which are
primarily designed to improve thread synchronization and specific application
areas such as media and gaming (29).

2006 Intel launched SSE4. It introduced 54 new instructions over SSE3. It
introduced support to perform floating-point dot products (30).

2008 Intel announced a new SIMD set instruction for x86-64 architecture. It was
called “Advanced Vector Extension” (AVX). One of the main improvements
was to double the size of the SIMD register from 128-bits to 256-bits, support
up to four operand instruction and fused operations. (31).

2011 Intel launched Sandy Bridge microarchitecture under the Core brand. Sandy
Bridge was the first microarchitecture that implements AVX (32).

2013 Intel launched Haswell microarchitecture which includes the second
generation of AVX (AVX2). (14)

2015 This year AVX-512 (AVX3) will be launched with Knights Landing Xeon Phi
processor. AVX3 doubles the size of the registers from 256-bits to 512-bits
(33).

Table 1: Summary of SIMD implementations on PC

23

3 MIPS Architecture

3.1 Brief History of MIPS Company

A group of researchers from Stanford University led by John L. Hennessy in the early 1980s

created the first MIPS (Microprocessor without Interlocked Pipeline Stages) processor (34).

They believed that using Reduced Instruction Set Computing (RISC), combined with

excellent compilers and hardware that exploit pipelining to execute these instructions,

could produce a faster processor using less die area. These were such success that MIPS

Computer Systems, Inc. was formed in 1984 to commercialize the MIPS architecture.

On 1992 Silicon Graphics Inc. (SGI) acquired the company and rename it as MIPS

Technologies, Inc. (35). SGI spun MIPS out on June 20th, 2000 by distributing all its interest

as stock dividend to the stockholders (36).

On 8 February 2013 MIPS Technologies, Inc. was acquired by Imagination Technologies (37).

Over the years MIPS has been focused on embedded markets such as Windows CE devices,

routers, video game consoles (Nintendo 64, PlayStation).

3.2 History of the MIPS ISA

From the first proposal ISA presented by John L. Hennessy research team. MIPS has been

evolving introducing new features generation by generation. A brief summary of the

evolution of MIPS processors is presented below. Each new MIPS generation is a superset

revision from the previous one. Additionally, newer versions are fully backward compatible.

MIPS I

The first MIPS design was introduced in 1985. It was designed with 32 general purpose

registers of 32 bits each. It had a 5 stages pipeline. Floating point on MIPS was originally

done in a separate chip called coprocessor 1 also called the Floating Point Accelerator (FPA).

It had 32 single-precision (32-bit) floating-point registers. Double precision was

implemented by using pairs of single precision registers to hold operands. All MIPS chips

use the IEEE 754 floating-point standard, both the 32-bit and the 64-bit versions. (38).

MIPS II

It was introduced in 1990. It is a superset revision from the previous one.

MIPS III

It was introduced in 1992. It increases the width of the registers and integer units up to 64-

bits. It introduced square root floating-point instruction. It is a superset revision from the

previous one.

24

MIPS IV

It was introduced in 1994. It introduced floating-point fused operations.

MIPS V

It was announced in 1996 but it was never launched to the market. A major improvement

was the MIPS Digital Media Extension (MDMX) which was a multimedia extension designed

to improve the performance of 3D graphics applications. MDMX was one of the first SIMD

implementations by MIPS.

3.3 Current MIPS ISA

After departure of MIPS Technologies from Silicon Graphics, architecture definition was

changed to refocus on the embedded market. All releases from 1 to 6 have both 32 and 64-

bit versions. MIPS64 versions are supersets of the corresponding 32-bit versions. It means

that MIPS32 ISA is part of the MIPS64 ISA. MIPS32 instructions are sign extended to work in

MIPS64 registers. Additionally, newer versions are fully backwards compatible. For

instance, a processor that implements MIPS64 Release 6 ISA can execute instructions from

MIPS32 Release 6 ISA, but not vice versa. In fact, it can execute any previous MIPS32 and

MIPS64 release.

MIPS32 and MIPS64 release 1

Introduced in 1999. It is mostly based on MIPS II but it borrows some features from MIPS

III, MIPS IV and MIPS V.

MIPS32 and MIPS3264 release 2

Introduced in 2002. It is a superset from the previous one and several improvements were

made. Some of them are support for 64-bit coprocessor for 32-bit and 64-bits CPU, support

for Virtual and Physical Memory, support for larger TLB pages, and support for external

interrupts controller.

MIPS32 and MIPS64 release 3

Introduced in 2010. It also introduces microMIPS32 and microMIPS64 instruction sets which

instructions of 16 and 32-bits respectively. The main idea of microMIPS32 and microMIPS64

is to have all the functionality of MIPS32 and MIPS64 with smaller code sizes. It introduced

support for non-executable and write-only virtual pages and for certain IEEE-754-2008 FPU

behaviors.

MIPS32 and MIPS64 release 4

This name was skipped for commercial issues. Number 4 in Asia is considered unlucky.

25

MIPS32 and MIPS64 release 5

Introduced in 2013. Here optional components appeared, e.g. virtualization,

multithreading, multimedia and DSP.

MIPS32 and MIPS64 release 6

Introduced in 2014. One of the most important changes is that the instruction set has been

simplified by removing infrequently used instructions and rearranging instruction encoding.

For example, unaligned memory accesses are now directly supported, without requiring

special instructions. Figure 4 shows the evolution of MIPS architecture from the original

MIPS I to MIPS32/64 Release 6. Also optional modules are shown.

Instructions that were removed from previous versions than Releases 6, still available and

they can be implemented to allow backward compatibility. Nevertheless, they are clearly

marked as obsolete and programmers should avoid using these instructions.

26

Figure 4: MIPS32/64 Releases and optional modules (39)

3.4 Optional Components

MIPS architecture is targeted to plenty of markets, in order to fill all possible requirements.

Imagination Technologies© provides some optional components fully compatible with

MIPS32, MIPS64, microMIPS32 and microMIPS64 ISA from release 5 and higher. Figure 4

shows the MIPS evolution from the original MIPS I to the MIPS32/64 Release 6 Figure 5

shows optional ISA modules compatible with MIPS32/64 Release 6. They are used to

improve some specific applications.

27

Figure 5: Optional components supported by MIPS32 and MIP64 (40)

3.5 Brief description of the optional components available on Release 6

The following briefly describes the modules compatible with MIPS Release 6 (41).

MCU

Provides enhanced handling of memory-mapped I/O registers and lower interrupt latencies.

This is intended to extend the interrupt controller support, typically required in

microcontroller system designs.

SmartMIPS

It is an instruction set extension designed to improve the performance and reduce memory

consumption of MIPS-based smart card or smart objects systems. These are very lower-

power CPUs whose biggest task is encryption/decryption.

MIPS MT

The MIPS MT provides the micro-architectural support needed to perform multithreading.

This includes support up to two virtual processors and lightweight contexts.

28

MIPS DSP11

The MIPS DSP provides enhanced performance of signal-processing applications. Roughly it

provides DSP functionality in MIPS processor cores.

MIPS VZE

The MIPS Virtualization Module provides hardware acceleration of virtualization of

Operating Systems.

MIPS MSA

The MIPS SIMD Architecture provides high performance parallel processing of vector

operations through the use of 128-bit wide vector registers. MIPS MSA is described in

chapter 4. It substitutes MIPS Digital Media Extension (MDMX).

11 MSA is recommended substitute. DPS is not allowed if MSA is implemented. USE of DPS Module is strongly
discouraged from Release 6 onwards.

29

4 The MIPS® SIMD Architecture module

Common operations that are used in multimedia processing which can be vectorized as

SIMD operations include:

 Addition and subtraction

 Multiply

 Logical and arithmetical shift operations

 Logical operations (AND, OR, Nor, XOR, etc.)

 Load and Store

 Fused operations like Multiply-Add, dot product

MIPS SIMD Architecture (MSA) module was implemented with strict adherence to the RISC

design principles pioneered by MIPS. It is a simple, yet very efficient instruction set carefully

selected with a hardware implementation that is efficient in terms of speed, area and power

consumption.

The MSA introduces 186 new instructions that operate on vector registers of 128-bit wide.

It supports four formats:

Data Format Characteristics Format Abbreviation

Byte 16 elements of 8-bit wide .B

Halfword 8 elements of 16-bit wide .H

Word 4 elements of 32-bit wide .W

Doubleword 2 elements of 64-bit wide .D

Vector Whole 128-bit wide vector .V
Table 2: Supported formats by MSA

Figure 6 shows the distribution and layout representation of elements for all four data

formats. MSA vectors are stored in memory starting from the least significant bit at the

lower byte address. The byte order can follow big or little endian conventions.

30

LSBMSB

LSBMSB

LSBMSB

LSBMSB

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0

1
2
7

1
2
0

1
1
9

1
1
2

1
1
1

1
0
4

1
0
3

9
6

9
5

8
8

8
7

8
0

7
9

7
2

7
1

6
4

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0

1
2
7

1
2
0

1
1
9

1
1
2

1
1
1

1
0
4

1
0
3

9
6

9
5

8
8

8
7

8
0

7
9

7
2

7
1

6
4

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0

1
2
7

1
2
0

1
1
9

1
1
2

1
1
1

1
0
4

1
0
3

9
6

9
5

8
8

8
7

8
0

7
9

7
2

7
1

6
4

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0

1
2
7

1
2
0

1
1
9

1
1
2

1
1
1

1
0
4

1
0
3

9
6

9
5

8
8

8
7

8
0

7
9

7
2

7
1

6
4

Vector Double

Word

Vector Word

Vector Half

Word

Vector Byte

Figure 6: MSA formats

The 64 least significant bits of MSA are shared with the floating-point unit (FPU). MSA and

FPU cannot be present, at the same time, unless the FPU has 64-bit floating-point registers.

Since MSA floating-point implementation is compliant with the IEEE Standard for Floating-

Point Arithmetic 754™ 2008 (42) and supports single and double precision. Moreover, MIPS

ISA indicates that FPU and MSA registers are mapped together. It means that MSA data is

destroyed when FPU instructions are executed and vice versa.

Programmer is responsible of saving registers if FPU and MSA instructions are mixed (kind

of context switch). An option would be to avoid to use FPU instructions and use MSA FPU

instructions using the start address of the FPU data as a start address of the vector.

Remaining elements will have trash-data. A better option is to vectorize your code (see GCC

section).

4.1 Instruction Decoding and Formats

The MSA instructions are encoded in 32 bits following RISC principles. These instructions

are well formed according to RISC. Many bit-ranges are common. For example, MSA

31

identifier, MSA opcode and register addresses (WS, WD, and WT). Table 3 shows all

decoding formats. This regularity makes easier to decode it. Instructions are distributed in

12 groups according to the number of operands, operation and behavior. All MSA

instructions except branches use 40 minor opcodes in MSA major opcode 0x1E. MSA branch

instructions are encoded in the COP1 opcode 0x11.

 I8 8-bit immediate value. 10 instructions.

 I5 5-bit immediate value. 11 instructions.

 BIT Immediate bit index. 12 instructions.

 I10 10-bit immediate value. 1 instruction.

 3R 3-register operations. 63 instructions.

 ELM Immediate element index. 9 instructions.

 3RF 3-register floating-point or fixed-point operations. 41 instructions.

 VEC Bit wise operations over whole vector. 7 instructions.

 MI10 Memory operations, immediate offset 10-bit. 2 instructions.

 2R 2-register operations. 4 instructions.

 2RF 2-register floating-point or fixed-point operations. 16 instructions.

 Branch Opcode is shared with COP1 instructions. Branches are taken at element

level, immediate offset 16-bit. 10 instructions.

Mnemonic Instruction layout Type
INST.df12 MSA OP operation df wt ws wd opcode 3R

INST.df MSA OP operation df wt ws wd opcode 3RF

INST.df MSA OP df i8 ws wd opcode I8

INST.df MSA OP operation df u5 ws wd opcode I5

INST.df MSA OP operation df s10 wd opcode I10

INST.df MSA OP operation df/m ws wd opcode BIT

INST.df MSA OP operation df/n ws wd opcode ELM

INST.V13 MSA OP operation wt ws wd opcode VEC

INST.df MSA OP s10 rs wd opcode MI10

INST.df MSA OP operation df ws wd opcode 2R

INST.df MSA OP operation df ws wd opcode 2RF

INST.V COP1 operation df wt s16 COP1

Table 3: Decode of instructions

12 df - supported data format abbreviation, see Table 2
13 V – vector variable of type V

32

Where:

MSA OP: Major Opcode space, this field has a constant binary value of 011110 and

identify MSA instructions.

COP1: Major Opcode space, this field has a constant binary value of 010001 and

identify coprocessor 1 instructions. Some of them are overridden by MSA.

ws: 5-bit MSA register address of source operand 1, e.g. $w0, $w1, …, $w31

wt: 5-bit MSA register address of source operand 2, e.g. $w0, $w1, …, $w31

wd: 5-bit MSA register address of source operand 3 and MSA register address

destination, e.g. $w0, $w1, …, $w31

rs: 5-bit general purpose register (GPRs) address, e.g. $0, $1, …, $31

opcode: Minor opcode space, this field identify instructions by type like 2R, 3R,

ELM and so on.

df: destination data format, which could be a byte, halfword, word, doubleword or

vector. See Table 2.

df/n: vector register element of index n, where n is a valid index value for elements

of data format df. See Figure 7.

df/m: Immediate value valid as a bit index for the data format df. See Figure 8.

u5: Immediate unsigned value of 5-bit

i8: Immediate value of 8-bit

s10: Immediate signed value of 10-bit

s16: Immediate signed value of 16-bit

operation: Instruction name.

33

Figure 7: Data format and element index field encoding

Figure 8: Data format and bit index field encoding

4.2 GCC support

Imagination Technologies (which is the owner of MIPS Technologies), provides some

developer tools. One of this tools is called Codescape (43) which includes GCC that supports

all MIPS configurations including a library to support MSA instructions. Simple C

programming allows portable codes in a short development time.

MSA toolchain includes

 Built-in intrinsic and data-types for all vector formats and instructions available from

C/C++ programming

 Support from common operators (+,-,*) that can be used on vector data-types.

 Complete replacement for hand-coded assembly

 Compiler optimization by auto vectorization

The MIPS SIMD Architecture is designed to meet multimedia requirements and other

compute-intensive applications. Video compression has a typical pixel depth of 8-bits or 10-

bits; further mathematical operations can take intermediate results to 16-bits or 32-bits.

Therefore using an implementation of a typical 128-bit vector register size SIMD processor,

34

it is possible to make a four to eight time reduction to mathematical and data load and store

operations (44).

The use of built-in data types and intrinsics makes C code quickly portable across all MSA

core implementations.14 Moreover, it also indirectly instructs the compiler to make the best

use of the SIMD instructions and architecture. For each instruction, the compiler provides

a C-style built-in to be used in conjunction with vector-type data structures in order to

target MSA vector registers. The preferred coding style is to use regular C arithmetic

operators on vector data types and fall back to built-ins for complex MSA instructions which

the compiler is unable to relate to vectorized C code (45).

To enable MSA features when compiling, the command line option –mmsa has to be used.

The command line option –mfp64 must be used in conjunction with –mmsa. Moreover, to

enable auto vectorization the command line option –O2 could be used.

$ mips-mti-elf-gcc –O2 –o test test.c –mmsa –mfp64 –T script
Figure 9: GCC compilation using MSA

It is required to specify a linker script (.ld files) with the –T option to build applications for

bare-metal15 targets, the -T option is required when linking to avoid references to undefined

symbols (46).

ENTRY(main)

PROVIDE (__stack = 0);

SECTIONS

{

 . = 0x1fc00000;

 .text : {

 *(Inicio)

 *(.text);

 }

 . = 0x1fc80000;

 .rodata : { *(.rodata) }

 .data : { *(.data) }

 .bss : { *(.bss) }

}
Figure 10: Linker script example.

Figure 11 shows a C code example that perform the addition of two integer arrays. The

arrays are added in groups of 4 elements. Vector type variables are declared using the

vector extension provided by GCC.

14 MIPS32, MIPS64, microMIPS32 and microMIPS64 for Release 5 and higher.
15 Applications that run in computers without operating system

35

typedef int v4i32 __attribute__ ((vector_size(16)));

#define N 16

/* Pointers to the input arrays */

int *input1, *input2 ;

/* Pointer to the output array to store addition */

int *output;

/* Vectors of type word */

v4i32 a, b, c;

int i;

/* Loop unrolled 4x */

for (i = 0; i < N; i += 4)

{

 /* Load 4 elements of array input1 */

 a = *((v4i32 *)(input1 + i));

 /* Load 4 elements of array input2 */

 b = *((v4i32 *)(input2 + i));

 /* Vector addition */

 c = a + b;

 /* Store addition of 4 elements */

 *((v4i32 *)output + i) = c;

}
Figure 11: Example for addition of two integer arrays

36

5 Tools and resources

5.1 Verilog

Verilog is a hardware description language (HDL). The standard includes support for

modeling hardware at the behavioral, register transfer level (RTL), and gate-level

abstraction levels, and for writing test benches. Verilog syntax is similar to the C

programming language and Verilog codes are shorter than VHDL codes (47).

5.2 Quartus II

The Altera Quartus II is a design software produced and provided by Altera. It is

multiplatform and provides analysis and synthesis of Verilog and VHDL hardware

description languages. The Quartus II software includes solutions for all phases of FPGA

design. We used 14.1 web edition version. It is a free version that only provides compilation

and programing for a limited number of Altera devices. Cyclone FPGA family is fully

supported. Some advanced features like LogicLock Region and Power Analysis are only

available in the Subscription Edition that requires a subscription license.

Web edition version of Quartus II also includes a ModelSim starter edition version which is

free. ModelSim is a source-level multi-language HDL simulation environment developed by

Mentor Graphics. ModelSim supports VHDL, Verilog and SystemC HDL. We used ModelSim

version 10.3c to simulate and run test benches.

5.3 DE2-115 board

Since this project is oriented to generate a soft-core implementation, we selected a popular

educational FPGA board. The DE2-115 board is equipped with a Cyclone EP4CE115 FPGA

with 114,480 logical elements (48). These are a summary of the main features of the DE2-

115 board:

 114,480 logic elements (LEs)

 266 Embedded 18x18 multipliers

 128 MB SDRAM

 2 MB SRAM

 8 MB Flash

 528 User I/Os

 Serial port

 Three 50MHz oscillators

37

6 Basic components

There are basic circuits that are used in the implementation like adders, multipliers and

multiplexors. We are going to describe how they were selected.

6.1 Adder

An adder is a digital circuit that produces the arithmetic sum of two binary numbers. The

majority of the adders use the full-adder as minimum component. A full adder is a

combinational circuit that performs the addition of three bits. Figure 12 shows the

implementation of a full adder. Figure 13 shows the block representation of a full adder.

We implemented three types of adders and evaluated their performance and resources

used in our FPGA. The implementation of 4-bit adders is explained next.

Figure 12: One-bit full adder implementation

38

Figure 13: One-bit full adder block

6.1.1 Ripple Carry Adder

The ripple carry adder consists of N full adders to add N-bit numbers. Full adders are

connected in a cascade. It means that from the second full adder, carry input of every full

adder is the carry output of its previous full adder. In the ripple carry adder, the result is

known after the carry signal has rippled through the whole adder. As a result, the sum will

be valid after a considerable delay time. Figure 14 shows an implementation of a 4-bit ripple

carry adder.

Figure 14: 4-bit ripple carry adder

39

6.1.2 Carry Look-ahead Adder

The carry look-ahead adder reduces the carry delay time by calculating the carry signals in

advance, based on the input signals. Figure 15 shows a 4-bit carry look-ahead adder

implementation. The carry logic block is implemented using boolean equations shown in

Figure 16. The disadvantage of the carry look-ahead adder is that the carry logic block

becomes complicated as the size of the adder grows. The carry look-ahead adder usually is

implemented as 4-bit or 8-bit blocks. These adder blocks are connected like full adders in

ripple carry adder are connected the same fashion.

Figure 15: 4-bit carry look-ahead adder

Figure 16: Boolean equations used in 4-bit carry look-ahead adder

40

6.1.3 Kogge-Stone Adder

The Kogge-stone adder is a parallel prefix form of carry look-ahead adder. It is the fastest

adder with focus on design time and is the common choice for high performance adders in

industry (49). The drawback of the Kogge-Stone adder is that it occupies a large silicon area.

Figure 17 shows a 4-bit Kogge-stone adder. It is composed by carry operators as shown in

Figure 18. Boolean equations that are used to implement the carry operators and calculate

the final result “S” are show in Figure 19.

(P3,G3) (P2,G2) (P1,G1) (P0,G0)

B3 A3 B2 A2 B1 A1 B0 A0

(Cp4,Cg4) (Cp2,Cg2) (Cp0,Cg0) (P0,G0)

Figure 17: 4-bit Kogge-Stone Adder

41

(CP0,CG0)

(Pi,Gi) (Pj,Gj)

Figure 18: Carry operator

𝐶𝑃0 = 𝑃𝑖𝑎𝑛𝑑𝑃𝑗

𝐶𝐺0 = (𝑃𝑗𝑎𝑛𝑑𝐺𝑗)𝑜𝑟𝐺𝑖

𝐶𝑖−1 = (𝑃𝑖𝑎𝑛𝑑𝐶𝑖𝑛)𝑜𝑟𝐺𝑖

𝑆𝑖 = 𝑃𝑖𝑥𝑜𝑟𝐶𝑖−1

Figure 19: Boolean equations involved in Kogge-Stone
adder

6.1.4 Adder evaluation

We implemented in the Cyclone IV FPGA the adders using a 16-bit width. Then these 16-bit

adders were used as basic adder blocks and 32-bit of the lower and faster 16-bit version

adders were implemented. Finally, the faster adder, the Kogge-Stone adder was expanded

up to 64-bit. An interesting observation is that the adder used by Quartus II which is called

Quartus II adder is even faster than the Kogge-Stone implementation.

This might happen because Kogge-Stone adder is losing performance by the 16-bit block

distribution. Also Quartus II selects the best adder algorithm depending on the width.

Examples of other adder algorithms are Carry Select Adders and combinational adders (50).

Finally, it has been decided to use the adder provider by Quartus II because it has similar

performance and requires less Logical Elements (LEs) than the Kogge-Stone adder. Future

implementations should have Kogge-Stone adder implemented with the appropriated

width and not using small blocks.

Adder Width Number of LEs Fmax (MHz)

Ripple Carry Adder 16 56 223

Carry Look-Ahead Adder 16 54 215

Kogge-Stone Adder 16 70 247

Ripple Carry Adder 32 109 109

Kogge-Stone Adder 32 212 211

Kogge-Stone Adder 64 423 159

Quartus II Adder 64 192 167
Table 4: Adder performance evaluation

42

6.2 Multiplier

As it has been said above, at the beginning this multimedia extension is oriented to be

implemented in FPGA. Therefore, we are using the DSP blocks included in the Cyclone IV

FPGA. Small width values like byte (8-bit) and halfword (16-bit) are executed directly on one

DSP block. DSP blocks in Cyclone IV FPGA are 18-bit width (51). For large integers like word

(32-bit) and doubleword (64-bit) we use the Karatsuba Algorithm.

The Karatsuba multiplication algorithm is an efficient way to build high bit width integer

multiplication, suitable for conserving DSP blocks in return for additional latency and cell

area. Karatsuba algorithm is based on a formula for multiplying two linear polynomials

which uses only 3 multiplications and 4 additions (52). The formula of the Karatsuba

algorithm is:

(𝑓1𝑥
𝑚 + 𝑓0)(𝑔1𝑥

𝑚 + 𝑔0) = ℎ2𝑥
2𝑚 + ℎ1𝑥

𝑚 + ℎ0

Figure 20: formula of Karatsuba algorithm

𝑓0 , 𝑓1 , 𝑔0 and 𝑔1 are m-bit polynomials. The polynomials ℎ0, ℎ1 and ℎ2 are computed by

applying the Karatsuba algorithm to the polynomials 𝑓0 , 𝑓1 , 𝑔0 and 𝑔1 as single coefficients

and adding coefficients of common powers of 𝑥 together. The circuit to perform Karatsuba

Algorithm is shown in Figure 21.

Figure 21: The circuit to perform Karatsuba multiplication

The “Overlap circuit” adds common powers of x in the three generated products. For

instance if n=8, then the input polynomials have a degree at most 7, for each of the

polynomials 𝑓0 , 𝑓1 , 𝑔0 and 𝑔1. Figure 22 shows the effect of the overlap module.

Coefficients to be added together are shown in the same columns.

43

Figure 22: The overlap circuit for the 8-bit Karatsuba multiplier

Example

Let A=197 and B=114 values of 8-bit width. We can split these numbers into their higher

and lower 4-bits using 16 as a base. Figure 23 shows a numerical example of the

multiplication of 197 by 144 based on the data flow and intermediate results given by the

circuit shown in Figure 21. Overlap row is two parallel adders of a few bits each one, a show

in Figure 22.

Operands

𝐴 = 197 𝐵 = 84

𝐴𝐵 = (𝑓1𝑥 + 𝑓0)(𝑔1𝑥 + 𝑔0)

𝐴 = (𝑓1𝑥 + 𝑓0) 𝐵 = (𝑔1𝑥 + 𝑔0)

Split

(x=16)
𝑓1 = 12 𝑓0 = 5 𝑔1 = 7 𝑔0 = 2

Operations 12x7=84

12x5=17 7x2=9

5x2=10
17x9=153

153-10=143

143-84=59

 ℎ2 = 84 ℎ1 = 59 ℎ0 = 10

Overlap
𝐴𝐵 = ℎ2𝑥

2 + ℎ1𝑥 + ℎ0

𝐴𝐵 = 84(162) + 59(16) + 10

Result 𝐴𝐵 = 22458

Figure 23: Numerical example of Karatsuba multiplier using base 16

44

6.3 Divider

Divider is one of the most expensive resources unit to implement. It uses substantial area

(50). Divider implementation is not part of this thesis and has been left for future

implementation. In order to save area we will use the Floating Point lanes to perform

integer division (21). Current implementation does not provide Floating Point SIMD

operations but MSA ISA does. As temporary solution the lpm_divide megafunction provided

by Altera has been used considering a 4-stage pipeline.

A low area, low performance alternative to the lpm_divide megafunction is using the

elementary school algorithm of processing the number from the most significant bit to the

less significant bit. When difference is negative, the next quotient bit is 0 and workspace is

untouched. When the difference is zero or positive, the next quotient bit is set to one and

workspace is overwritten with the difference value. The quotient bits accumulate in the

numerator register, and the remainder accumulates in the workspace as the clock

progressed. The ready signal indicates completion. Figure 24 shows this algorithm.

Figure 24: Alternative division algorithm

This alternative divider implementation requires as many clock ticks as width-bits source

operands. In other words, a division of 64-bits requires 64 clock ticks. Dividers can be chosen

by modifying parameters at configuration file of project.

45

6.4 Multiplexer

A multiplexer is a logical circuit used to select one of some input signals and forward the

selected one to an output signal. Figure 25 shows a block representation of a 4-to 1

multiplexer.

00

01

10

11

[127:0]

Sel

out

[1
:0

]

[127:0]

[127:0]

[127:0]

A

B

C

D

Figure 25: Multiplexer 4-to 1 of 128-bit width

𝑜𝑢𝑡 = (𝐴𝑆𝑒𝑙1̅̅ ̅̅ ̅̅ 𝑆𝑒𝑙0̅̅ ̅̅ ̅̅) + (𝐵𝑆𝑒𝑙1̅̅ ̅̅ ̅̅ 𝑆𝑒𝑙0) + (𝐶𝑆𝑒𝑙1𝑆𝑒𝑙0̅̅ ̅̅ ̅̅) + (𝐷𝑆𝑒𝑙1𝑆𝑒𝑙0)

Figure 26: Boolean equation for a 4-to 1 multiplexer

We have decided to code big multiplexers (128-bit width) using the boolean equation

shown in Figure 26 because Quartus does not implement always the shortest circuit if a

case statement is used.

6.5 Saturated Arithmetic

One extremely useful feature of MIPS SIMD Architecture technology is its support for

saturated integer arithmetic. In saturated integer arithmetic, computational results are

automatically clipped by the processor to prevent overflow and underflow conditions. This

differs from normal wraparound integer arithmetic where an overflow or underflow result

is retained. Saturated arithmetic is handy when working with pixel values since it eliminates

the need to explicitly check is the result of each pixel calculation for an overflow or

underflow condition. MIPS SIMD Architecture technology includes instructions that

perform saturated arithmetic using 8-bit, 16-bit, 32-bit and 64-bit integers, all signed and

unsigned.

Figure 27 shows an example of 8-bit signed integer subtraction using wraparound and

saturated arithmetic. An overflow condition occurs if the two 8-bit signed integers are

subtracted using wraparound arithmetic. With saturated arithmetic, however, the result is

clipped to the lowest possible 8-bit signed integer value. MIPS SIMD Architecture also

46

supports saturated integer addition, as shown in Figure 28. Table 5 summarizes the

saturated arithmetic range limits for all possible integer sizes and sign types.

Integer Type Lower Limit Upper Limit
8-bit signed -128 (0x80) +127 (0x7F)

8-bit unsigned 0 +255 (0xFF)

16-bit signed -32768 (0x8000) +32767 (0x7FFF)

16-bit unsigned 0 +65535 (0xFFFF)

32-bit signed -21447483648 (0x80000000) +2147483647 (0x7FFFFFFF)

32-bit unsigned 0 +4294967295 (0xFFFFFFFF)

64-bit signed -9.2233E+18 (0x8000000000000000)16 +9.2233E+18 (0x7FFFFFFFFFFFFFFF)17

64-bit unsigned 0 +1.8446E+19 (0xFFFFFFFFFFFFFFFF)18
Table 5: Range Limits for Saturated Arithmetic

-110 (0x92)

90 (0x5A)

-110 (0x92)

90 (0x5A)

56 (0x38) -128 (0x80)

Wraparound Saturated

Figure 27: 8-bit signed integer subtraction using wraparound and saturated arithmetic

150 (0x96)

135 (0x87)

150 (0x96)

135 (0x87)

29 (0x1D) 255 (0xFF)

Wraparound Saturated

Figure 28: 8-bit unsigned integer addition using wraparound and saturated arithmetic

16 It is −9,223,372,036,854,775,808
17 It is 9,223,372,036,854,775,807
18 It is 18,446,744,073,709,551,615

47

7 The MIPS SIMD Architecture Instruction Set

The MIPS SIMD Architecture (MSA) consists of integer, fixed-point, and floating-point

instructions, all encoded in the MSA major opcode space (31-26 bit). The semantics of most

MSA instructions are defined at the granularity of vector elements. A few instructions have

semantics that consider the whole SIMD operand as a bit-vector, e.g. bitwise logical

operations.

For certain instructions, the source operand could be an immediate value or a specific

vector element selected by an immediate index. The immediate or vector element is being

used as a fixed operand across all destination vector elements.

The MSA integer instruction set can be partitioned into the following functional groups:

 Data transfer

 Arithmetic

 Comparison

 Conversion

 Logical and Shift

 Unpack and Shuffle

 Insertion and Extraction

7.1.1 Data Transfer

The data transfer group contains instructions that copy packed integer data values from

one MSA register to another, and also between general-purpose registers and control

registers. Table 6 shows the MSA data transfer instructions. These instructions are executed

in the MSA unit and in the MIPS core.

48

Mnemonic Type Description Implementation

FILL.df 2R Vector Fill from GPR Figure 29

CFCMSA ELM GPR Copy from MSA Control Register Figure 29

COPY_S.df ELM Copy from MSA to GPR Signed Figure 29

COPY_U.df ELM Copy from MSA to GPR Unsigned Figure 29

CTCMSA ELM GPR Copy to MSA Control Register Figure 29

INSERT.df ELM GPR Insert Element Figure 29

MOVE.V ELM Vector Move Figure 29

LDI.df I10 Immediate Load Figure 29

LD.df MI10 Vector Load Figure 29

ST.df MI10 Vector Store Figure 29

Table 6: Data transfer instructions in MSA

Figure 29 shows data-paths of the MIPS32 core and the SIMD unit. The figure shows that

stages are aligned and there are only four paths required to share data. These paths are:

 A: Path A is used to copy one element from MSA register to GPR. The block called

DFN chooses the element selected by the field “df/n” and depending on the

instruction sign extension is performed. Also data from MSA control register is

copied using this data path.

 B: Path B is used to copy data from GPR to MSA registers. Special unit 3 is used to

transform the scalar data into vector data.

 C: Path C is used to send data from MSA register to memory. The MIPS32 core

calculates the memory address like in integer store instructions using the “rs”

instruction field to read the address base from GPR and the “s10” instruction field

as address offset.

 D: Path D is used to receive data from memory to MSA registers. The MIPS32 core

calculates the memory address like in integer read instruction.

MOVE instruction is executed only in the SIMD unit. It copies values from MSA register to

MSA register. The MSA Control block in the MIPS32 core represents the “Decode extension”

implemented into the original MIPS32 core to support fundamental Release 6 features

needed by the MIPS SIMD unit.

49

M
S

A
 R

e
g

.

F
ile

IF
/I

D

ID
/E

X

M
u
x

M
u
x

M
u
x

M
u
x

E
X

/M

M
u
x

Reg.

Control
M

/W
E

G
P

R
 F

ile

MSA

Control

A
L
U

M
u
x

M
u
x

Data

Memory

Mux

M
u
x

Cop 0
Hazard

Unit

F
u

s
e
d

S
p

e
c
ia

l

1

S
h

u
ff

le

S
p

e
c
ia

l

2

S
p

e
c
ia

l

3

V
P

U

DFN

M
IP

S3
2

 C
o

re
SI

M
D

 U
n

it

A B C D

M
u
x

Figure 29: Interconnection between MIPS32 Core and MSA unit (control signals omitted)

7.1.2 Arithmetic

The arithmetic group contains instructions that perform basic arithmetic (additions,

subtractions, and multiplications) on packed operands. This group also includes instructions

that are used to perform high-level operations such as min/max, averaging, absolute values,

and integer sign changes. All the arithmetic instructions support signed and unsigned

integers unless otherwise noted.

50

Mnemonic Type Description Implementation

ADD_A.df 3R Vector Add Absolute Values Figure 40

ADDS_A.df 3R Vector Saturated Add of Absolute Values Figure 40

ADDS_S.df 3R Vector Signed Saturated Add of Signed
Values

 Figure 40

ADDS_U.df 3R Vector Unsigned Saturated Add of Unsigned
Values

 Figure 40

ADDV.df 3R Vector Add Figure 40

ASUB_S.df 3R Vector Absolute Values of Signed Subtract Figure 40

ASUB_U.df 3R Vector Absolute Values of Unsigned Subtract Figure 40

AVE_S.df 3R Vector Signed Average Figure 40

AVE_U.df 3R Vector Unsigned Average Figure 40

AVER_S.df 3R Vector Signed Average Rounded Figure 40

AVER_U.df 3R Vector Unsigned Average Rounded Figure 40

DIV_S.df 3R Vector Signed Divide Figure 40

DIV_U.df 3R Vector Unsigned Divide Figure 40

DOTP_S.df 3R Vector Signed Dot Product Dot Product

DOTP_U.df 3R Vector Unsigned Dot Product Dot Product

DPADD_S.df 3R Vector Signed Dot Product and Add Dot Product

DPADD_U.df 3R Vector Unsigned Dot Product and Add Dot Product

DPSUB_S.df 3R Vector Signed Dot Product and Subtract Dot Product

DPSUB_U.df 3R Vector Unsigned Dot Product and Subtract Dot Product

HADD_S.df 3R Vector Signed Horizontal Add Figure 40

HADD_U.df 3R Vector Unsigned Horizontal Add Figure 40

HSUB_S.df 3R Vector Signed Horizontal Subtract Figure 40

HSUB_U.df 3R Vector Unsigned Horizontal Subtract Figure 40

MADDV.df 3R Vector Multiply and Add Figure 40

MAX_A.df 3R Vector Maximum Based on Absolute Values MAX MN unit

MAX_S.df 3R Vector Signed Maximum MAX unit

MAX_U.df 3R Vector Unsigned Maximum MAX unit

MIN_A.df 3R Vector Minimum Based on Absolute Value MAX MN unit

MIN_S.df 3R Vector Signed Minimum MIN unit

MIN_U.df 3R Vector Unsigned Minimum MIN unit

MOD_S.df 3R Vector Signed Module Figure 40

51

Mnemonic Type Description Implementation

MOD_U.df 3R Vector Unsigned Module Figure 40

MSUBV.df 3R Vector Multiply and Subtract Figure 40

MULV.df 3R Vector Multiply Figure 40

SUBS_S.df 3R Vector Signed Saturated Subtract of Signed
Values

 Figure 40

SUBS_U.df 3R Vector Unsigned Saturated Subtract of
Unsigned Values

 Figure 40

SUBSUS_U.df 3R Vector Unsigned Saturated Subtract of Signed
from Unsigned

 Figure 40

SUBSUU_S.df 3R Vector Signed Saturated Subtract of Unsigned
Values

 Figure 40

SUBV.df 3R Vector Subtract Figure 40

SAT_S.df BIT Immediate Signed Saturate SAT unit

SAT_U.df BIT Immediate Unsigned Saturate SAT unit

ADDVI.df I5 Immediate Add Figure 40

MAXI_S.df I5 Immediate Signed Maximum MAX unit

MAXI_U.df I5 Immediate Unsigned Maximum MAX unit

MINI_S.df I5 Immediate Signed Minimum MIN unit

MINI_U.df I5 Immediate Unsigned Minimum MIN unit

SUBVI.df I5 Immediate Subtract Figure 40

Table 7: Arithmetic instructions in MSA

7.1.3 Comparison

The comparison group contains instructions that compare two packed operands element-

by-element. The result of each comparison is saved to the corresponding position in the

destination operand.

Mnemonic Type Description Implementation

CEQ.df 3R Vector Compare Equal CEQ unit

CLE_S.df 3R Vector Compare Signed Less Than or Equal CLE unit

CLE_U.df 3R Vector Compare Unsigned Less Than or
Equal

 CLE unit

CLT_S.df 3R Vector Compare Signed Less Than CLT unit

CLT_U.df 3R Vector Compare Unsigned Less Than CLT unit

BNZ.df COP1 Immediate Branch If All Elements Are Not
Zero

 Branch unit

52

Mnemonic Type Description Implementation

BNZ.V COP1 Immediate Branch If Not Zero (At Least One
Element of Any Format Is Not Zero)

 Branch unit

BZ.df COP1 Immediate Branch If At Least One Element
Is Zero

 Branch unit

BZ.V COP1 Immediate Branch If Zero (All Elements of
Any Format Are Zero)

 Branch unit

CEQI.df I5 Immediate Compare Equal CEQ unit

CLEI_S.df I5 Immediate Compare Signed Less Than or
Equal

 CLE unit

CLEI_U.df I5 Immediate Compare Unsigned Less Than or
Equal

 CLE unit

CLTI_S.df I5 Immediate Compare Signed Less Than CLT unit

CLTI_U.df I5 Immediate Compare Unsigned Less Than CLT unit

Table 8: Comparison instructions in MSA

7.1.4 Logical and Shift

The logical and shift group contains instructions that perform bitwise logical operations. It

also includes instructions that perform logical and arithmetic shift using the individual data

elements of a packed operand.

Mnemonic Type Description Implementation

NLOC.df 2R Vector Leading Ones Count Leading Ones/Zeros unit

NLZC.df 2R Vector Leading Zeros Count Leading Ones/Zeros unit

PCNT.df 2R Vector Population Count Population count

BCLR.df 3R Vector Bit Clear BIT unit

BINSL.df 3R Vector Bit Insert Left BINSL unit

BINSR.df 3R Vector Bit Insert Right BINSR unit

BNEG.df 3R Vector Bit Negate BIT unit

BSET.df 3R Vector Bit Set BIT unit

SLL.df 3R Vector Shift Left SLL unit

SRA.df 3R Vector Shift Right Arithmetic SRA unit

SRAR.df 3R Vector Shift Right Arithmetic Rounded SRAR

SRL.df 3R Vector Shift Right Logical SRL unit

SRLR.df 3R Vector Shift Right Logical Rounded SRLR unit

BCLRI.df BIT Immediate Bit Clear BIT unit

BINSLI.df BIT Immediate Bit Insert Left BINSL unit

53

Mnemonic Type Description Implementation

BINSRI.df BIT Immediate Bit Insert Right BINSR unit

BNEGI.df BIT Immediate Bit Negate BIT unit

BSETI.df BIT Immediate Bit Set BIT unit

SLLI.df BIT Immediate Shift Left SRL unit

SRAI.df BIT Immediate Shift Right Arithmetic SRA unit

SRARI.df BIT Immediate Shift Right Arithmetic SRAR

SRLI.df BIT Immediate Shift Right Logical SRL unit

SRLRI.df BIT Immediate Shift Right Logical Rounded SRLR unit

ANDI.B I8 Immediate Logical And Vector Operations

BMNZI.B I8 Immediate Bit Move If Not Zero Vector Operations

BMZI.B I8 Immediate Bit Move If Zero Vector Operations

BSELI.B I8 Immediate Bit Select Vector Operations

NORI.B I8 Immediate Logical Negated Or Vector Operations

ORI.B I8 Immediate Logical Or Vector Operations

XORI.B I8 Immediate Logical Exclusive Or Vector Operations

AND.V VEC Vector Logical And Vector Operations

BMNZ.V VEC Vector Bit Move If Not Zero Vector Operations

BMZ.V VEC Vector Bit Move If Zero Vector Operations

BSEL.V VEC Vector Bit Select Vector Operations

NOR.V VEC Vector Logical Negated Or Vector Operations

OR.V VEC Vector Logical Or Vector Operations

XOR.V VEC Vector Logical Exclusive Or Vector Operations

Table 9: Logical and shift instructions in MSA

7.1.5 Unpack and Shuffle

The unpack and shuffle group contains instructions that interleave (unpack) the data

elements of a packed operand. It also contains instructions that can be used to reorder

(shuffle) the data elements of a packed operand.

Mnemonic Type Description Implementation

ILVEV.df 3R Vector Interleave Even ILVEV unit

ILVL.df 3R Vector Interleave Left ILVL unit

ILVOD.df 3R Vector Interleave Odd ILVOD unit

54

Mnemonic Type Description Implementation

ILVR.df 3R Vector Interleave Right ILVR unit

PCKEV.df 3R Vector Pack Even PCKEV unit

PCKOD.df 3R Vector Pack Odd PCKOD unit

SLD.df 3R GPR Columns Slide SLD unit

VSHF.df 3R Vector Data Preserving Shuffle VSHF unit

SLDI.df ELM Immediate Columns Slide SLD unit

SHF.df I8 Immediate Set Shuffle Elements SHF unit

7.1.6 Insertion and Extraction

The insertion and extraction group contains instructions that are used to insert or extract

elements in a MSA register.

Mnemonic Type Description Implementation

SPLAT.df 3R GPR Element Splat SPLAT unit

INSVE.df ELM Element Insert Element INSVE unit

SPLATI.df ELM Immediate Element Splat SPLAT unit

Table 10: Insertion and extraction instructions in MSA

8 Architecture Implementation

8.1 Overview

Based on the objective this implementation should be as simple as possible. For example,

we have implemented an in-order scalar microarchitecture because it is simpler than

implementing superscalar or OoO. Pipelining is a well understand technique to improve

performance. It has been part of computer architecture lectures for years, even from basic

levels (15). Since SIMD unit cannot work with a processor we needed to found one.

This SIMD unit was developed to work as a coprocessor, to easily change in the future the

main core. Unfortunately, we could not find a MIPS32 or MIPS64 Release 5 core

implementation. So, we decided to use a MIPS32 soft-core processor called mips32r1_xum

from opencores.org (53). It is an open source repository focused on hardware Intellectual

property (IP).

We upgraded the MIPS32 core with the minimal features from Release 6 needed by the

MIPS SIMD Architecture.

55

8.2 MIPS32 core

MIPS32 core mips32r1_xum is a 5-stage pipeline single-issue in-order processor.

Unfortunately it only supports MIPS32 Release 1 ISA while the SMID unit has been

developed based on MIPS64 Release 619, so is necessary at least a core running MIPS32

Release 5. In consequence, it has been necessary to make some modifications to the core.

We have been added the minimum MIPS32 Release 6 requirements to use the SIMD unit.

Furthermore, the Exception Handler (Cop 0) was upgraded to support MIPS SIMD

Architecture ISA. Finally, we have has been added support for unaligned memory

operations as required by the SIMD unit at the memory stage. Figure 30 shows the new

paths created and the MSA Control unit that control them.

Table 11 shows the 11 instructions added to the MIPS32 core. Decode and execution of

these instructions is done on both the MIPS32 core and the SIMD unit. Besides, execution

is synchronized at the stage level, thus whenever is needed the core and SIMD side

exchange data or control signals in both directions. Even though MIPS32 core and SIMD unit

are separated designs for these 11 instructions both units cooperate as if they were one.

Figure 29 showed both as big one unit.

Finally, mips32r1_xum core does not have a branch predictor since this design does not

need one. It is because it has a sort pipeline of 5-stages and branch instructions have a

branch delay slot (54). This means that meanwhile a branch is resolved another instruction

is executed avoiding to stall the pipeline.

Both the main core and the SIMD unit have a 5-stage pipeline and their execution is aligned.

Control signals are shared between control units. When any of the pipelines needs to stall

at any stage the other pipeline stalls too, keeping instructions execution between pipelines.

As a summary of the mips32r1_xum characteristics, we can list:

 In-order single issue

 Five-stage pipelining

 MIPS32 Release1 (partial upgrade to Release 6)

19 In fact, it supports microMIPS32, microMIPS64, MIPS32 and MIPS64 for Releases 5 and 6

56

Data

Memory

R
e
g
is

te
r

F
ile

IF
/I
D

ID
/E

X

E
X

/M

M
/W

E

A
L
U

M
u
x

M
u
x

MSA

Control

M
u
x

Mux

WE

Data ReadData Write

WE
Sel

Sel

Reg to

MSA

Reg from

 MSA

Hazard

Unit

Alu

ctr

Cop 0

*MSA instructions

Figure 30: Modifications made to the main core to attach SIMD unit

Instruction Type Purpose

LD.df MI10 Vector Load

ST.df MI10 Vector Store

CTCMSA ELM GPR Copy to MSA Control Register

CFCMSA ELM GPR Copy from MSA Control Register

COPY_S.df ELM Copy from MSA to GPR Signed

COPY_U.df ELM Copy from MSA to GPR Unsigned

FILL.df 2R Vector Fill from GPR

BNZ.V COP1 Immediate Branch If Not Zero (At Least One Element of Any
Format Is Not Zero)

BNZ.df COP1 Immediate Branch If All Elements Are Not Zero

BZ.df COP1 Immediate Branch If At Least One Element Is Zero

BZ.V COP1 Immediate Branch If Zero (All Elements of Any Format Are Zero)
Table 11: Instructions introduced to MIPS32 core to support SIMD unit.

57

8.3 Fetch

Figure 31 shows the interconnection between the SIMD coprocessor and the main core. The

main core executes all instructions that are not SIMD. It also manages the SIMD unit,

performing fetch and decode of the instructions and accessing memory.

SIMD unit has a decoder. It is connected in parallel with the decoder of the MIPS core and

snoops fetched instructions from the main core pipeline. When it detects MSA instructions

it decodes them and SIMD unit starts to work. Otherwise SIMD unit just executes NOP

operations. On the other hand, the main core also decodes SIMD instructions when these

are issued to the pipeline and is able to determine whether they should be kept in the main

pipeline in order to execute a specific task. These are instructions20 that require some

intervention of the main core such memory operations, which involve address calculation,

branches and instructions that access the general purpose register file. Oher SIMD

operations are interpreted as NOP operations by the main core. Figure 31 shows the

interconnection between the MIPS32 core and the SIMD unit at IF/DC stage.

20 Data transfer instructions

58

Instruction

Memory

PC

IF
/I
D

Core

MIPS32

Data

Memory

SIMD Unit

D
a

ta

H
a

z
a
rd

s

R
e

g
s

D
a

ta

A
d
d

r

W
E

Figure 31: Interconnection between core and coprocessor

59

8.4 Decode

SIMD unit has its own decode logic, and is able to generate all the necessary signals to

activate and control all the lanes. Figure 32 shows the main signals generated by SIMD

decode. Instruction recodification is done using the layout shown in Table 3.
IF

/I
D

Decode

Source 1

Source 2

Source 3/Destination

Signed

Saturated

Lane Control

Format

WE register

WE memory

Read Memory

Figure 32: Signals generated by SIMD decode

8.5 Register File

The SIMD unit has a private register file. Each register stores a vector of 128-bit wide. There

are 32 registers. Every vector register can be interpreted according to four formats: byte (8-

bit), halfword (16-bit), word (32-bit), doubleword (64-bit). It depends of the instruction field

df. There is no way to know the data format of a vector unless associated to a specific

instruction. Programmer is responsible of keeping the semantic of the application.

Corresponding to the associated data format, a vector register consists of a number of

elements indexed from 0 to n-1. Figure 6 shows the vector register layout for elements of

all four data formats. Element 0 is always in the less significant part of the vector register.

MSA vectors are stored in memory starting from the 0𝑡ℎ element at the lowest byte

address. The byte order of each element can be little-endian or big-endian depending on

the implementation. The scalar floating-point unit (FPU) registers are mapped to the MSA

vector registers.

60

MSA has operations that uses up to 3 source operands and only writes up to one register.

In order to implement a register file with these features a memory with 3 read ports and 1

write port is required. Figure 33 shows how the MSA register file should be.

MSA

Register

File

Write Port

Read Port 1

Read Port 2

Read Port 3

Figure 33: Representation of the MSA register file

Considering that the implementations is intended to run on FPGA, instead of building a

multiported memory using logical elements, we have used the memory elements provided

by the FPGA. These memories have two ports that can be used as read or write ports. The

design contemplates one as a read port and the one as a write port and we implement three

copies of the register file, in order to provide the 3 required read ports. Figure 34 shows

how the memories ports are connected. The write port of all memories are connected in

parallel, so all memories will have a copy of all values written.

Using this three memory block in parallel we avoid to use LEs. An implementation of a

register file 3R1W21 built as a memory declaration statement in Verilog, will generates a

costly circuit that requires a lot of LEs. Moreover, FPGA memory elements have some

interesting features such as initialization at compile time and visualization at run time using

Quartus II.

21 3R1W: 3 read ports, 1 write port.

61

Memory 0

32x128

[4:0]

[127:0]

Memory 1

32x128

[4:0]

Memory 2

32x128

[4:0]

Data Read

Source 1

Source 1

Address

Source 2

Address

Source 3

Address

[127:0]

Data

Write

[4:0]

Address

Write

Data Read

Source 2

Data Read

Source 3

WE

Figure 34: Implementation of the MSA register file

62

9 SIMD execution stage

The SIMD unit is composed of several individual sub-units. Figure 35 shows all sub-units of

the SIMD unit. The Vector Processing Unit (VPU) performs integer and bit-wise logical

operations, There are some lanes that have three source operands to support fused

operations. The Shuffle unit performs element permutation operations. There are three

special units that are used to transform or adapt some values into vector representation

and also to transform from one specific vector format to another one. In this chapter we

describe these units.

F
u

s
e
d

S
p

e
c
ia

l

1 [127:0]

A
[127:0]

Scr1

FmtSel

S
h

u
ff

le

S
p

e
c
ia

l

2 [127:0]

B
[127:0]

Scr1

[15:0]
Inm

S
p

e
c
ia

l

3

C
[127:0]

Scr3

SrcDest

[63:0]
GPR

DF
[127:0]

V
P

U
Integer and

bit-wise

Shuffle
A

B

C

D

D

Lane Control

Lane Control

Figure 35: SIMD execution stage

9.1 Vector Processing Unit

A Vector Processing Unit (VPU) executes vector operations over vector registers. This

operations can be integer, bit-wise logical or even Floating Point operations. Each VPU is

divided into identical elements called lanes. A lane is a basic building block unit of a VPU. A

lane is similar to an ALU included in a scalar processor, with the important difference that

all lanes work in a lock-stepped fashion.

63

To achieve the maximum parallel performance there must be a lane for each element. For

instance, to perform a SIMD add over two vector registers of 4 elements in one single cycle

there must have 4 lanes, one to perform each operation. But it is not, to save area we could

implement the SIMD unit by utilizing from 1 up to 4 lanes. For instance, if we wanted to

perform again the 4 element SIMD operation but using 2 lanes, it would require twice the

time. Figure 36 shows an implementation using the same number of lanes than elements to

process (left) and other that has half the lanes than elements to process.

B[2]B[3] B[1] B[0]

A[2] A[1] A[0]

+ + + +

A[3]

C[2]C[3] C[1] C[0]

B[2]B[3] B[1] B[0]

A[2] A[1] A[0]

+ +

A[3]

C[2]C[3] C[1] C[0]

B[2]B[3] B[1] B[0]

A[2] A[1] A[0]

+ +

A[3]

C[2]C[3] C[1] C[0]

Figure 36: Four lanes (left) vs two lanes (right)

The VPU has to deal with four data-formats, it means that we have four width of elements

and therefore lanes. There are two options here, design lanes for each of the four width or

design lanes that can joint (sub-lanes) to perform bigger operations. For instance, joining

two 8-bit lanes to perform 16-bit operations or four 8-bit lane to perform 32-bit operation.

Using sub-lanes reduces area consumption but increases the critical path and the

complexity of the design and coding, because extra control logic is needed. On the other

64

hand, using individual lanes only requires to generate one parametrized lane, and the

compiler will generate all four formats. Future work should be find a middle point.

9.2 Multipurpose adder lane

The circuit shown in Figure 37 allows the SIMD unit to calculate 22 different operations.

These operations are shown in Table 12 and all of them are variations of addition and

subtraction operations. Some operations use a secondary unit, that can be unit special 1, 2

or 3 to transform data before computation. For instance, to fill a vector B with as many

copies of an immediate value as elements in the vector.

M
u
x

[M:0]

LSB

MSB

[M:0]

[n:0]

LSB

MSB M
u
x

Sign ext

n

Co

SiOv

Add/Sub

A

Ci

[n:0]

M
u
xA

B
S

[M:0]

LSB

MSB

[M:0]

[n:0]

LSB

MSB M
u
x

[M:0]

Sign ext

n

B

[n:0]

M
u
xA

B
S

M
a
x

S
ig

M
in

S
ig

M
a
x

U
n

M
in

U
n

[M:1]

M=n+1

M

UnOv

[n:0]

[n:0]

[n:0]

[n:0]

A B

Signed A

Signed B

Sel

Co

SiOv

UnOv

Abs(B)

Abs(A) Dec(A)

Dec(B) A
B

S

ALU

ctr

u
D

e
c
o
d

e

Signed A

Signed B

Abs(A)

Abs(B)

Dec(A)

Dec(B)

Add/Sub

Ci

Sel

Figure 37: Multipurpose adder lane

65

Input Signals Control Signals

Description Instruction
Si

gn
ed

Sa
tu

ra
te

d

O
p

er
at

io
n

Si
gn

ed
 A

Si
gn

ed
 B

A
d

d
/S

u
b

C
i

A
b

s(
A

)

D
ec

(A
)

A
b

s(
B

)

D
ec

(B
)

0 0 0001 0 0 1 0 0 0 0 0 A+u5 ADDVI.df

0 0 0010 0 0 0 0 0 0 0 0 A-u5 SUBVI.df

0 0 0001 0 0 1 0 0 0 0 0 A+B ADDV.df

0 0 0010 0 0 0 0 0 0 0 0 A-B SUBV.df

0 0 0110 0 0 1 0 1 0 1 0 abs(A)+abs(B) ADD_A.df

1 1 0110 1 1 1 0 1 0 1 0 sat(abs(A)+abs(B)) ADDS_A.df

1 1 0001 1 1 1 0 0 0 0 0 sat(sig(A)+sig(B)) ADDS_S.df

0 1 0001 0 0 1 0 0 1 0 1 sat(A+B) ADDS_U.df

1 0 0111 1 1 1 0 0 1 0 1 (sig(A)+sig(B))/2 AVE_S.df

0 0 0111 0 0 1 0 0 1 0 1 (A+B)/2 AVE_U.df

1 0 1000 1 1 1 1 0 1 0 1 (sig(A)+sig(B) +1)/2 AVER_S.df

0 0 1000 0 0 1 1 0 1 0 1 (A+B+1)/2 AVER_U.df

1 0 0001 1 1 1 0 0 0 0 0 sig(A)+sig(B) HADD_S.df

0 0 0001 0 0 1 0 0 1 0 1 A+B HADD_U.df

1 0 0010 1 1 0 0 0 0 0 0 sig(A)-sig(B) HSUB_S.df

0 0 0010 0 0 0 0 0 1 0 1 A-B HSUB_U.df

1 1 0010 1 1 0 0 0 0 0 0 sat(sig(A)-sig(B)) SUBS_S.df

0 1 0010 0 0 0 0 0 1 0 1 sat(A-B) SUBS_U.df

0 0 1011 0 1 0 0 0 1 0 1 sat(A-sig(B)) SUBSUS_U.df

0 0 1100 0 0 0 0 0 1 0 1 sat(sig(A-B)) SUBSUU_S.df

1 0 1101 1 1 0 0 0 1 0 1 abs(sig(A)-sig(B)) ASUB_S.df

0 0 1101 0 0 0 0 0 1 0 1 abs(A-B) ASUB_U.df

Table 12: Instructions that uses multipurpose adder lane.

9.3 Multiplier lane

Circuit show in Figure 38 performs a multiplication between two elements. The most

significant half of the multiplication result is discarded. The multiplier is implemented using

dedicated hardware from the FPGA instead of building them using only logical elements,

leveraging that dedicated hardware multipliers are faster than those implemented with

only logic elements. The implementation details from the multiplier are discussed in section

6.2. The multiplication result can be added or subtracted from a third operand to execute

fused operations. Table 13 shows operations that can be executed using this circuit.

66

M
u
x

[n:0]A

[n:0]

[n:0]

A×B

C+A×B

C-A×B

Sel

B

[n:0]

[n:0]C

Add/Sub
[n:0]

ALU

ctr

Sel

Add/Sub

u
D

e
c
o
d

e

Figure 38: Multiplication circuit and fused multiplication

Input Signals Control

Description Instruction Purpose

Si
gn

ed

Sa
tu

ra
te

d

O
p

A
d

d
/S

u
b

Se
l

0 0 0011 0 0 A *B MULV.df Vector Multiply

0 0 1001 1 1 C+A*B MADDV.df Vector Multiply and Add

0 0 1010 0 1 C-A*B MSUBV.df Vector Multiply and Subtract
Table 13: Instructions that use Multiplication circuit

9.4 Divider circuit

Figure 39 shows the divider circuit and Table 14 shows the instructions that are executed

on this circuit. Divider circuit is implemented using the LPM modules provided by Altera.

LPM-divider is a pipelined operation in which each operation (division and module) requires

4 cycles.

67

Therefore, division is the operation that requires the highest execution time. Moreover, the

division module is the most expensive in terms of area, due to the logic elements

necessaries to its implementation. For instance, a 64-bit divider uses about 6k logical

elements. That is approximately the same amount of elements that uses the entire MIPS32

core. Implementation details are discussed in the section 9.4.

M
u
x

[n:0]A

[n:0]

M
u
xA

B
S

[n:0]

M
a
x

S
ig

M
in

S
ig

M
a
x

U
n

M
in

U
n

[n:0]

[n:0]

[n:0]

[n:0]

A/B

A%B

Sel

Co2

Signed

B

[n:0]

M
u
xA

B
S

Signed

[n
]

[n
]

Result

Signed

Result

Signed

Signed

ALU

ctr

Sel

Signed

Start

u
D

e
c
o
d

e
[n:0]

M
u
x

2
's

C
o

[n:0]

Busy

Start
[n:0]

Quotient

Remainder

Co2

Co2

Figure 39: Divider circuit

68

Input Signals

Description Instruction Purpose
Si

gn
ed

Sa
tu

ra
te

d

O
p

1 0 1100 sig(A)/sig(B) DIV_S.df Vector Signed Divide

0 0 1100 A/B DIV_U.df Vector Unsigned Divide

1 0 0101 sig(A)%sig(B) MOD_S.df Vector Signed Module

0 0 0101 A%B MOD_U.df Vector Unsigned Module
Table 14: Instructions that uses divided circuit

Figure 40 shows the 3R lane that is composed by the circuits described above, multipurpose

adder, multiplier and divider. These circuits share some resources: Two input multiplexors,

used to calculate absolute values; and the output multiplexor, used to choose the final

result. To achieve the maximum data level parallelism, we decided to implement one lane

per element to process. By doing this we can process all data formats using the same time.

There are 30 of these 3R lanes inside the VPU.

 16 lanes of 8-bit wide to calculate Byte format operations

 8 lanes of 16-bit wide to calculate Halfword format operations

 4 lanes of 32-bit wide to calculate Word format operations

 2 lanes of 64-bit wide to calculate Doubleword operations

Figure 61 (in the Annexes) shows how the vector result is reconstructed in the different

available formats: byte, halfword, word and doubleword using the results of 3R lanes.

69

M
u
x

[M:0]

LSB

MSB

[M:0]

[n:0]

LSB

MSB M
u
x

Sign ext

n

Co

SiOv

Add/Sub

A

Ci

[n:0]

M
u
xA

B
S

[M:0]

LSB

MSB

[M:0]

[n:0]

LSB

MSB M
u
x

[M:0]

Sign ext

n

B

[n:0]

M
u
xA

B
S

M
a
x

S
ig

M
in

S
ig

M
a
x

U
n

M
in

U
n

[M:1]

M=n+1

M

UnOv

[n:0]

[n:0]

[n:0]

[n:0]

Signed A

Signed B

Sel

Co2

Co

SiOv

UnOv

Abs(A) Dec(A)

Dec(B) A
B

S
Lane ctr

Signed

Saturated

u
D

e
c
o
d

e

Signed A

Signed B

Signed C

Abs(A)

Abs(B)

Dec(A)

Dec(B)

Add/Sub

F Add/Sub

Ci

Sel
[n:0]A

[n:0]B

[n:0]

[n:0]C

F Add/Sub
[n:0]

3R

result

Signed C

M
u
x

2
's

C
o

[n:0]

Busy

Start
[n:0]

Quotient

Remainder

Co2

Co2

[n
]

[n
]

Abs(B)

S(A)

S(B)
S(A)

S(B)

[3:0]

S(A)

S(B)

Figure 40: 3R Lane, multiplier, divider, adder and substrate multipurpose

70

9.5 Special unit 1

Figure 41 shows the special unit 1 schematically. This unit transforms between some vectors

formats, including:

 Byte to Halfword

 Halfword to Word

 Word to Doubleword

Each transformation only takes odd or even values from the original format and depending

on the flag signed a sign extend operation is performed. Figure 62 and Figure 63 shows the

implementation of the special unit 1. Figure 64 shows the selector for the result in the

desired format. The result of the special unit 1 is sent to the VPU or the Shuffle unit.

S
p

e
c
ia

l

1 [127:0]

A
[127:0]

Scr1

FmtSel

Figure 41: Special unit 1

9.6 Special unit 2

Figure 42 shows the special unit 2 schematically. This unit is similar to special unit 1. Circuits

shown in Figure 62, Figure 63 and Figure 65 compose the special unit 2. One extra feature

is that here Immediate vectors are created from the immediate value taken from the

instruction. Figure 66 shows the multiplexor that chooses between of the possible results.

Note that Even/Odd transformations are mismatch between the special unit 1 and the

special unit 2.

71

S
p

e
c
ia

l

2 [127:0]

B
[127:0]

Scr1

FmtSel

[15:0]
Inm

Figure 42: Special unit 2

9.7 Special unit 3

Figure 43 shows the special unit 3. The main purpose of this unit is to choose between

source operand 3 from the Vector Register File (VRF) or the value read from the General

Purpose Register (GPR). If the GPR is selected, this value is truncated 22and replicated to

create all 4 vector formats. Figure 67 shows the implementation of the special unit 3, while

Figure 68 shows the multiplexor that chooses the final result of this unit.

S
p

e
c
ia

l

3 [127:0]

C
[127:0]

Scr3

SrcDest

[63:0]
GPR

DF

Figure 43: Special unit 3

22 According to the format selected, byte, halfword or word.

72

10 Memory

MIPS processors are designed under Harvard architecture philosophy, this means that

instructions and data are stored in separate memories. As a result, the pipeline design has

to consider an instruction cache and a data cache. The minimum storage capacity

(granularity) is a cache line, which can have just a few bytes, typically 64-bytes. MIPS release

prior to Release 5 support only aligned memory accesses. Release 5 of the architecture

supports 128-bit memory accesses without natural alignment.

Considering what has been described above, as well as the fact that MIPS SIMD Architecture

only runs on Release 5 or higher, we have implemented these memories according with

Release 5 requirements, such as load/store of 128-bit size and unaligned memory accesses.

Moreover, these memories are designed to use memory elements from the FPGA, so they

are not caches strictly. Figure 44 shows schematically the data memory and the instruction

memory. The size of the memories depends on the width of the address (“n” and “m”). Data

memory reads 16 bytes and can write 1, 2, 4, 8 or 16 bytes at the same time.

73

M
e
m

D
a

ta
[127:0]

[127:0]

[n:0]

[3
:0

]

DataWrite

Address

W
E

 3
2

W
E

 6
4

W
E

 1
2

8

DataRead
In

s

D
a

ta

[31:0][m:0]

PC Instructions

Figure 44: Instruction and data memory

10.1 Instruction Memory

This memory stores all the instructions that are going to be executed by the processor

including those that should be executed by the SIMD unit. Since each instruction is

composed by 4 bytes (32-bits) each memory row stores a whole instruction. This memory

has 128k rows of 4-byte wide, with a total capacity of 512 kB. Instruction memory is

implemented using FPGA’s memory elements in order to save logic elements and get better

operational frequency. Finally, this memory is initialized using hexadecimal files specified at

compile time.

74

10.2 Data Memory

This memory stores all the data used by the processor and the SIMD unit. The data memory

reads 16 bytes (128-bits) at the same time to provide data to read operations of all sizes.

Additionally, this memory can write 1, 2, 3, 4, 8 or 16 bytes at the same time. It is used by

nibble-store operations, half, word and double word store operations. One important

feature is that all read and write operations do not require natural alignment at the address

level.

To provide unaligned support it has been decided to use 16 individual memories (cells)
where each store a byte. Based on the address that is set by the processor to read or write
it is necessary to reorder the cell’s contents. Figure 46 and Figure 47 show the mechanism
to rearrange memory access.

Figure 48 shows the data path to the memory cells. The Write Enable (WE) signals of each
memory cell are also rearranged. The 4 less significant bits from the address are used to
calculate the positions of a given byte to a given cell. The remainder bits are used to select
the row of each memory cell. The constant 4-bits adders are used to allow read or write
operations from segments of two adjacent memory rows to create a 128-bits row.

Figure 45 shows an example of row and memory calculation. Suppose that the processor
needs to read address 3226. It is divided into the lower 4 bits (10) and the remaining upper
bits (201). Then using the IDs of each memory cell given by its position (15 to 0) a 4 bit offset
is calculated. This offset allows to jump to the next row when it is needed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

200 X X X X X X X X X X X X X X X X

201 F E D C B A X X X X X X X X X X

202 X X X X X X P O N M L K J I H G

203 X X X X X X X X X X X X X X X X

Memory CellsAddress

Rows

Data F E D C B A P O N M L K J I H G

Cell ID 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Offset 0-Addr[3:0] 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6

Result Addr+Offset 3231 3230 3229 3228 3227 3226 3241 3240 3239 3238 3237 3236 3235 3234 3233 3232

Row Result[n:4] 201 201 201 201 201 201 202 202 202 202 202 202 202 202 202 202

Address [n:4] [n:0]

3226 201 10

Figure 45: Example of row and memory cell calculation

Once all the 16 bytes of a row (or rows) have been read, we need to rearrange the data
using the 4 lower bits from the address and the left multiplexor shown in Figure 46. Finally,
we send the data back to the processor. Depending on address, data could be fit in one
memory row if it matches with the natural alignment or it could be split in two rows
(unaligned).

75

[127:0]

LSB

MSB

[127:8]

[7:0]
[127:0]

LSB

MSB

[127:16]

[15:0]
[127:0]

LSB

MSB

[127:24]

[23:0]
[127:0]

LSB

MSB

[127:32]

[31:0]
[127:0]

LSB

MSB

[127:40]

[39:0]
[127:0]

LSB

MSB

[127:48]

[47:0]
[127:0]

LSB

MSB

[127:56]

[55:0]
[127:0]

LSB

MSB

[127:64]

[63:0]
[127:0]

LSB

MSB

[127:72]

[71:0]
[127:0]

LSB

MSB

[127:80]

[79:0]
[127:0]

LSB

MSB

[127:88]

[87:0]
[127:0]

LSB

MSB

[127:96]

[95:0]
[127:0]

LSB

MSB

[127:104]

[103:0]
[127:0]

LSB

MSB

[127:112]

[111:0]
[127:0]

LSB

MSB

[127:120]

[119:0]
[127:0]

LSB

MSB

M
u
x

[127:0]

D
a

ta
R

e
a

d

[127:0]

B
u

ff
e

rR
e

a
d

[3
:0

]Address

[127:0]

LSB

MSB

[127:120]

[119:0]
[127:0]

LSB

MSB

[127:112]

[111:0]
[127:0]

LSB

MSB

[127:104]

[103:0]
[127:0]

LSB

MSB

[127:96]

[95:0]
[127:0]

LSB

MSB

[127:88]

[87:0]
[127:0]

LSB

MSB

[127:80]

[79:0]
[127:0]

LSB

MSB

[127:72]

[71:0]
[127:0]

LSB

MSB

[127:64]

[63:0]
[127:0]

LSB

MSB

[127:56]

[55:0]
[127:0]

LSB

MSB

[127:48]

[47:0]
[127:0]

LSB

MSB

[127:40]

[39:0]
[127:0]

LSB

MSB

[127:32]

[31:0]
[127:0]

LSB

MSB

[127:24]

[23:0]
[127:0]

LSB

MSB

[127:16]

[15:0]
[127:0]

LSB

MSB

[127:8]

[7:0]
[127:0]

LSB

MSB

M
u
x

[127:0]

B
u

ff
e

rW
ri
te

[127:0]

D
a

ta
W

ri
te

[3
:0

]Address

Figure 46: Multiplexors used to rearrange the data to load and store it into the data memory

76

[15:0]

LSB

MSB

[15]

[14:0]
[127:0]

LSB

MSB

[15:14]

[13:0]
[127:0]

LSB

MSB

[15:13]

[12:0]
[127:0]

LSB

MSB

[15:12]

[11:0]
[127:0]

LSB

MSB

[15:11]

[10:0]
[127:0]

LSB

MSB

[15:10]

[9:0]
[127:0]

LSB

MSB

[15:9]

[8:0]
[127:0]

LSB

MSB

[15:8]

[7:0]
[127:0]

LSB

MSB

[15:7]

[6:0]
[127:0]

LSB

MSB

[15:6]

[5:0]
[127:0]

LSB

MSB

[15:5]

[4:0]
[127:0]

LSB

MSB

[15:4]

[3:0]
[127:0]

LSB

MSB

[15:3]

[2:0]
[127:0]

LSB

MSB

[15:2]

[1:0]
[127:0]

LSB

MSB

[15:1]

[0]
[127:0]

LSB

MSB

M
u
x

[15:0]

WE
[15:0]

W
E

m
a

s
k

[3
:0

]Address

[3:0]

0x00FF

15
[15:0]

[11:0]

0xFFFF

15
[15:0]

LSB

MSB
15

15 [15:0]

WE

128

WE

64

WE

32

Figure 47: Logical circuit that creates the 16 write enable signals and multiplexor used to rearrange the write enable
mask.

77

[3
:0

]

Cell

0

[7
:0

]

[0
]

[n:0]

[3
:0

]

[3
:0

]

[3
:0

]

0

[n
:4

]
[3

:0
]

[3
:0

]

Cell

1

[7
:0

]

[1
]

1

[n
:4

]
[3

:0
]

[3
:0

]

Cell

15

[7
:0

]

[1
5
]

15

[n
:4

]
[3

:0
]

[3
:0

]

Cell

14

[7
:0

]

[1
4
]

14

[n
:4

]
[3

:0
]

[15:0]

[127:0]

[1
2

7
:0

]

LSB
MSB

Address

BufferRead

Buffer

Write

WE

Figure 48: Calculation of rows for each memory cell

78

11 Software Tools

In this chapter we describe the software tools used to develop and test this project.

Moreover, we describe a small application that we created to load programs into the FPGA

for simulations.

11.1 GCC

In order to compile C programs to generate MIPS binaries we used a version of the GCC

compiler provided by Imagination Community. This compiler is distributed together with

Codescape MIPS SDK. The version (4.9.0) includes support for MIPS SIMD Architecture (55).

Figure 49 shows the compilations flags needed to enable the SIMD ISA. As a requirement,

MSA can be used only with MIPS Release 5 or higher, it can be 32 or 64-bit, but FPU must

to be 64-bits wide. Using optimization flag –O2 GCC tries to auto-vectorize loops.

Figure 49: Compiler flags to enable SIMD

After the compilation there are some points to consider. First, the executable files

generated by GCC use the Executable and Linkable Format (ELF). Second, it is desirable to

generate Bare-Metal applications [ref to bare]. In consequence, it is indispensable to

provide some extra info to GCC linker to avoid or at least to override syscalls to the

Operating System. To fulfill this, the file “scrip.ld” has been provided to GCC the linker.

Figure 50 shows this script, that indicates the start address of “.text” section, the end of

data section and the other sections that will appear in the executable file.

Figure 50: File script.ld

79

Figure 51 shows the file “startup.S”, that initializes the global pointer ($gp) and the stack

pointer ($sp), and then calls the main function from the program that is going to be

executed. When the program ends, the exit function is called. The function just keeps the

processor spinning at a certain address. When this address is reached the emulator

(ModelSim) knows that the simulation has finished.

Figure 51: File startup.S

Figure 52 shows the makefile used to compile and link bare-metal MIPS applications. First,

the object files are created from the source code of the target application and “startup.S”

file. Then they are linked using “script.ld” file. Once the executable application has been

built is possible to run it using QEMU but to run it on ModelSim some additional steps are

required.

Figure 52: Makefile

Once the application is compiled the next step is disassemble it. We are using CodeBench

from MentorGraphics (56), its most recent version is 2.24.51.20140217. Figure 53 shows an

example of disassembled code. CodeBench provides the memory address for each

instruction and data. With this information it is possible to use an application that we have

80

developed call “translate” to create all *.hex files to fill memory cells required by ModelSim.

These additional steps are essential because every memory cell requires an individual *.hex

file and each memory cell stores only a byte. Finally, “translate” application fills with zeros

the memory space that is not used by the application to avoid warning messages.

Figure 53: Fragment of a decompile file using CodeBench

11.2 QEMU

Is possible to run MIPS applications on QEMU (57) which is a generic and open source

machine emulator. It supports several architectures. Version 2.0 and higher supports MIPS

Release 5 and SIMD instructions. Codescape MIPS SDK also includes QEMU. QEMU can be

used to test applications and debug them using for instance GDB that is supported by

QEMU.

Unfortunately QEMU only gives us information at software level23, to obtain more accurate

information at circuit level like information in each register, memory, buses, control signals,

stages of the pipeline and so on we need to use a different tool.

11.3 ModelSim

ModelSim is a simulation tool developed by Mentor Graphics for simulation of hardware

description languages (HDL). It supports different languages as VHDL, Verilog and SystemC.

Quartus II suite includes a free version of ModelSim and it is linked to run simulation on

ModelSim from Quartus II with one click. Once everything is configured, ModelSim

generates waveforms allowing to observe the behavior of each component even at the gate

23 QEMU allows to read data at the register level but not at the microarchitectural level.

81

level. Figure 54 shows an example of waveforms. Once a simulation has been executed it

becomes possible to traverse across all signals.

Figure 54: Example of waveforms generated by ModelSim

Analyzing waveforms implies much toil because there are a lot of them. ModelSim includes

a memory visualizer; Figure 55 shows a data portion example. Despite of the benefits that

are provided by this tool, sometimes is not enough to debug. Memories are too big to keep

track of changes cycle by cycle.

Figure 55: Memory visualization in ModelSim

The term instrumentation refers to the ability to monitor or measure the level of a product's

performance and to diagnose errors. In programming, this means the ability of an

application to incorporate (58):

 Code tracing: Receiving informative messages about the execution of an application

at run time.

 Debugging: Tracking down and fixing programming errors in an application under

development.

 Profiling: Tracking the performance of the application and events of the system via

performance counters.

 Event logs: Tracking major events in the execution of the application.

These instrumentations concepts can be applied to hardware development since modern

hardware development is similar to software development since it uses programing

languages as well. Moreover, in the hardware world Debugging process is formally known

verification (47).

82

It is often desired to keep verification code separated from the design code. We decided to

use compiler directives to enable or disable instrumentation.

This has been implemented across the project in key points like write and read ports of

memories, VPU, Control unit and so on. We have also created a test bench. Figure 56 shows

a piece of code used to keep track of read and write operations. Figure 57 shows an example

of a piece of flow data on the VPU. Each cycle VPU generates a result

`ifdef TraceDebug

initial

begin

 f = $fopen("output.txt","w");

 g = $fopen("trace.txt","w");

 $fwrite(f,"WE\tAddress\t\tData\n");

 $fwrite(g,"PC\t\tInstruction\n");

 @(negedge Reset_sys); //Wait for reset to be released

 @(posedge clk_sys); //Wait for fisrt clock out of reset

 i = 0;

 while(InstMem_Address!=32'h1fc00028)

 begin

 @(posedge clk_sys);

 i=i+1;

 if(InstMem_Ready)

 begin

 $fwrite(g,"%h\t%h\n",InstMem_Address,

 Instruccion);

 end

 if(|DataMem_Write)

 begin

 $fwrite(f,"%h\t%h\t%h\n",DataMem_Write,

 DataMem_Address,Data_Write);

 end

 if(DataMem_Read & DataMem_Ready)

 begin

 $fwrite(f,"Read\t%h\t%h\n",

 DataMem_Address,Data_Read);

 end

 end

 $fwrite(f,"\nClock ticks: %d\n",i);

 $fclose(f);

 $fclose(g);

 $display("\nClock ticks: %d\n",i);

 $finish;

end

`endif
Figure 56: Example of instrumentation code

83

Figure 57: A segment of a trace execution from the VPU

The final step to validate the implementation is comparing the output of the simulation and

the execution of the same application running on QEMU. The results must match.

PC Instruction Src1 ReadA Src2 ReadB Dest Result

1fc00318 78ccf912 31 0000227cffffc7d1ffffeb3f00001006 12 0000098e0000098e0000098e0000098e 4 09461e2e075ac955fe7d25d6fec19941

1fc00318 78ccf912 31 0000227cffffc7d1ffffeb3f00001006 12 0000098e0000098e0000098e0000098e 4 09461e2e075ac955fe7d25d6fec19941

1fc0031c 7be01ce6 3 06894f1f0194c1ddf53a239bced111fe 0 0001713cfffe9f10000268acfffcdf34 19 06774f1f016c3f230b3a2365322f1102

1fc00320 78c9a092 20 ffff9686ffffe42c00001b4d00000059 9 0000300b0000300b0000300b0000300b 2 f4313928043aa84b04630e33fe3933c0

1fc00324 78be0cd9 1 08c971170217dc92f8835ba1f74a4f4d 30 00000000000000000000000000000000 19 08c971170217dc92f8835ba1f74a4f4d

1fc00328 78be8e59 17 ee9842f708d6b3f706a7bbee17f61db5 30 00000000000000000000000000000000 25 ee9842f708d6b3f706a7bbee17f61db5

1fc00328 78be8e59 17 ee9842f708d6b3f706a7bbee17f61db5 30 00000000000000000000000000000000 25 ee9842f708d6b3f706a7bbee17f61db5

1fc0032c 78beac59 21 e71b56c5de21c55610fe1b7b1184744d 30 00000000000000000000000000000000 17 e71b56c5de21c55610fe1b7b1184744d

1fc00330 78cfbcd2 23 00008e4affffacb5ffff9016fffef731 15 0000187e0000187e0000187e0000187e 19 16666983fa1fd5a8edce5675ddf4916b

1fc00334 7bf01826 3 06894f1f0194c1ddf53a239bced111fe 16 00001151000011510000115100001151 0 06774f1f016c3f230b3a2365322f1102

1fc00338 78c5dc52 27 ffff752fffffc7c30000497200009175 5 fffff384fffff384fffff384fffff384 17 ede06001e0dfdee20d6930430a6c83a1

1fc00338 78c5dc52 27 ffff752fffffc7c30000497200009175 5 fffff384fffff384fffff384fffff384 17 ede06001e0dfdee20d6930430a6c83a1

1fc0033c 78be0819 1 08c971170217dc92f8835ba1f74a4f4d 30 00000000000000000000000000000000 0 08c971170217dc92f8835ba1f74a4f4d

1fc00340 7859210e 4 09461e2e075ac955fe7d25d6fec19941 25 ee9842f708d6b3f706a7bbee17f61db5 4 f7de612510317d4c0524e1c416b7b6f6

1fc00344 78ceb012 22 fffff39d0000723d0000013b0000880c 14 ffffc4dfffffc4dfffffc4dfffffc4df 0 0ba5dadae7b513b5f83a9a06d7de01c1

1fc00348 785918ce 3 06894f1f0194c1ddf53a239bced111fe 25 ee9842f708d6b3f706a7bbee17f61db5 3 f52192160a6b75d4fbe1df89e6c72fb3

1fc00348 785918ce 3 06894f1f0194c1ddf53a239bced111fe 25 ee9842f708d6b3f706a7bbee17f61db5 3 f52192160a6b75d4fbe1df89e6c72fb3

1fc0034c 794b210a 4 f7de612510317d4c0524e1c416b7b6f6 11 0000000b0000000b0000000b0000000b 4 fffefbcc000206300000a49c0002d6f7

1fc00350 794b18ca 3 f52192160a6b75d4fbe1df89e6c72fb3 11 0000000b0000000b0000000b0000000b 3 fffea43200014d6fffff7c3cfffcd8e6

1fc00354 7851904e 18 16f48a42279c2ecae8e793b2044e622a 17 ede06001e0dfdee20d6930430a6c83a1 1 04d4ea43087c0dacf650c3f50ebae5cb

1fc00358 7851108e 2 f4313928043aa84b04630e33fe3933c0 17 ede06001e0dfdee20d6930430a6c83a1 2 e2119929e51a872d11cc3e7608a5b761

1fc00358 7851108e 2 f4313928043aa84b04630e33fe3933c0 17 ede06001e0dfdee20d6930430a6c83a1 2 e2119929e51a872d11cc3e7608a5b761

1fc0035c 794b000a 0 0ba5dadae7b513b5f83a9a06d7de01c1 11 0000000b0000000b0000000b0000000b 0 000174bbfffcf6a2ffff0753fffafbc0

1fc00360 794b9c4a 19 16666983fa1fd5a8edce5675ddf4916b 11 0000000b0000000b0000000b0000000b 17 0002cccdffff43fbfffdb9cbfffbbe92

1fc00364 794b084a 1 04d4ea43087c0dacf650c3f50ebae5cb 11 0000000b0000000b0000000b0000000b 1 00009a9d00010f82fffeca180001d75d

1fc00368 794b108a 2 e2119929e51a872d11cc3e7608a5b761 11 0000000b0000000b0000000b0000000b 2 fffc4233fffca35100023988000114b7

1fc00368 794b108a 2 e2119929e51a872d11cc3e7608a5b761 11 0000000b0000000b0000000b0000000b 2 fffc4233fffca35100023988000114b7

84

12 Evaluation

12.1 FPGA utilization

Table 15 shows a summary of hardware resources used by the implementation. We can see

that the SIMD unit uses a huge amount of resources (75.55%) of the FPGA. It is not a fair

comparison between the MIPS32 core because SIMD unit supports operations up to 64-bit

and MIPS32 only 32-bit Some operations increase quadratically the amount of resources

needed with respect the width of the operation. Moreover, SIMD unit supports more

instructions than the MIPS32 core.

Unit LEs Utilization

MIPS32 Core 6,937 6.06%

VPU and Shuffle 81,341 71.05%

SIMD miscellanies 5,153 4.50%

Memory 3,128 2.73%

Total 96,559 84.35%
Table 15: Resources of the implementation

MIPS32r1_xum core only can run up to 30 MHz so entire maximum frequency of project is

limited by the MIPS32 core. To achieve higher a frequency pipeline size should increase too.

But MIPS32 processor must be modified as well to keep stage synchronization.

Nevertheless, the maximum frequency achieve by the SIMD unit is about 60 MHz, but also

will benefit of extra pipeline.

12.2 Benchmarks

To evaluate the performance of the SIMD unit a couple of micro benchmarks have been

compared considering three scenarios.

 Compile from “C” code using the maximum optimization flag supported by

Codescape but avoiding to use SIMD instructions too (-O2 flag).

 Compile from “C” code using the maximum optimization flag supported by

Codescape and enable SIMD instructions and auto-SIMD by GCC (-mmsa -O2 flag).

 Rewrite the benchmark kernel in assembler using all possible SIMD instructions

and for the remaining “C” code use the maximum optimization flag.

There are some restrictions to run benchmarks, the FPU is not included on the main core,

neither floating point SIMD. Moreover, memory size is limited up to 512 KB and there is not

any operating system that can be executed without a full implementation of the MIPS ISA.

These are the reasons why it has been decided to use micro benchmarks, the

85

implementation of the remaining elements that are needed to integrate the complete

system are out of the scope of this thesis. We have used two microbenchmarks: FDCT and

Matmul.

12.2.1 FDCT

An example of the use of the Fast Discrete Cosine Transform (FDCT) is as a kernel on JPEG

codification. FDCT requires a lot of computation based on integer array elements. Some

characteristics are that it operates with arrays and bit operations. As input it has a Matrix

of 16x16 32-bit elements that in our experiments is initialized with random data.

Table 16 shows the results of executing this benchmark under the constraints of each of the

three scenarios proposed. The speedup is calculated using the number of cycles required to

execute the benchmark. The difference between using SIMD instructions or not is up to

4.05x over the code generated by GCC using optimization flag “-O2”.

Optimization Instructions Cycles Step Speedup Cumulative Speedup

-O2 451 10299 1.0x 1.0x

-O2 mmsa 642 5694 1.81x 1.81x

Hand written assembly 387 2546 2.24x 4.05x
Table 16: FDCT Benchmark results, total speedup of using SIMD is 4.05x

Figure 58: FDCT Benchmark results

0

2000

4000

6000

8000

10000

12000

FDCT -O2 FDCT -O2 -mmsa FDCT ASM

Ex
ec

u
ti

o
n

 c
yc

le
s

Optimization Level

FDCT Benchmark

86

12.2.2 Matmult

Matmult is a matrix multiplication of two 20x20 matrices. Both matrices were filled with

random data. Some features are loops, nested loops and arrays.

Table 17 shows the results of executing this benchmark in the three scenarios proposed.

The speedup is calculated using the number of cycles required to execute the benchmark.

The speedup of using SIMD instructions with hand written assembly is 2.68x over the code

generated by GCC using optimization flag “-O2”.

Optimization Instructions Cycles Step Speedup Cumulative Speedup

-O2 195 85825 1.0x 1.0x

-O2 -mmsa 194 49803 1.72x 1.72x

Hand written assembly 194 31903 1.56x 2.68x
Table 17: Matmult Benchmark results, total speedup of using SIMD is 2.68x

Figure 59: Matmult Benchmark results

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Matmult -O2 Matmult -O2 -mmsa Matmult ASM

Ex
ec

u
ti

o
n

 c
yc

le
s

Optimization Level

Matmult Benchmark

87

12.3 Summary

It has been implemented 123 SIMD instructions, as well as it has been built and tested, using

an entire test bench to take code C code, compile it with GCC and test in Simulink. Two

micro benchmarks have been executed with and without SIMD instructions to study the

impact in performance of adding SIMD support, as well as the effectiveness of GCC auto

vectorization.

88

13 Future work

Current implementation of the MIPS SIMD Architecture is still under development. It can

be expanded with the incorporation of Floating-Point SIMD operation lanes. This project is

part of a bigger project, that has as main goal the design and implementation of a

superscalar processor with out-of-order support, based on MIPS64 Release 6 (13).

Figure 60 shows a block diagram of the superscalar processor. That project is divided in

smaller projects, some of them are SIMD, FPU and Load/Store Queue. The FPU will be

transformed into FPU lanes and integrated into the SIMD unit. The SIMD Functional Units

(VPU, Shuffle, FP) will be used in the superscalar processor. An alternative to increase the

performance the SIMD unit is to support a wider vector register set of 256 bits. MSA scales

with the vector register width.

L1

INSTRUCTION CACHE

FETCH IFQ

A
L
L

O
C

A
T

IO
N

 &
 R

E
N

A
M

E

M
A

P
P

E
R

/D
IS

P
A

T
C

H

BRANCH

PREDICTOR

D
E

C
O

D
E

In
t.

 R
e

g
.

F
ile

F
P

 R
e
g

.

F
ile

L1

DATA CACHE

L2

UNIFIED CACHE

Integer

FUs

DATA

Prefetching

PC
B

Y
P

A
S

S

FP

FUs

IIQ

IFQ

LSQ

ROB

Exception

Handler
DTLB

SIMD

FUs

DTLB

IVQ

V
e
c
.

R
e

g
.
F

ile

Figure 60: Superscalar processor

89

14 Conclusions

We realized that designing a microarchitecture requires significant effort and expertise. It

is full of challenges, because there is always a tradeoff between performance and power.

Computer architecture has been improving designs generation by generation and always

trying to keep easy the programmer life. We are in an inflection point, because now the

programmer has to take care about de architecture in order to achieve performance.

Parallel programming models such as OpenMP are helping. It is just the beginning since ILP,

DLP and TLP are starting to mix and new architectures are appearing. Also new execution

models that exploits them are appearing too, such as SIMT.

We have to keep in mind that classic models and techniques are also evolving such as, new

SIMD extensions with wider registers and more features will continue appearing. For

instance, from MMX, SSE, AVX and AVX-512 Intel has move from 64-bit, 128-bit, 256-bit and

512-bit wide. We can expect 1024-bit wide SIMD extensions to appear in the mid-term

future. We have to start to think in parallel from the basic “computer education”,

programmers and computer architects. That is the main goal of this big project. Encourage

new generations to thing in parallel.

90

15 References

1. Cramming More Components onto Integrated Circuits. MOORE, GORDON E. 1, 1998,

PROCEEDINGS OF THE IEEE, Vol. 86, pp. 82-85.

2. HPSm, a high performance restricted data flow architecture having minimal functionality. Hwu,

Wen-reel and Patt, Yale N. 1986. ACM SIGARCH Computer Architecture News. Vol. 14, pp. 297-

306.

3. Complexity-Effective Superscalar Processors. Jouppi, Norman P and Smith, JE. 1997. Intl.

Symposium on Computer Architecture. Vol. 145, pp. 206-218.

4. Design challenges of technology scaling. Borkar, Shekhar. 4, s.l. : IEEE, 1999, Micro, IEEE, Vol.

19, pp. 23-29.

5. Amdahl's law in the multicore era. Hill, Mark D and Marty, Michael R. 7, s.l. : IEEE, 2008,

Computer, pp. 33-38.

6. Data processing in exascale-class computer systems. Moore, Chuck. 2011. The Salishan

Conference on High Speed Computing.

7. Cavium. ThunderX™ ARM Processors. [Online] [Cited: Jun 1, 205.]

http://www.cavium.com/ThunderX_ARM_Processors.html.

8. Intel Corporation. Familia de productos Intel Xeon Phi. [Online] [Cited: Jun 1, 2015.]

http://www.intel.es/content/www/es/es/processors/xeon/xeon-phi-detail.html.

9. MMX technology extension to the Intel architecture. Peleg, Alex and Weiser, Uri. 4, s.l. : IEEE,

1996, Micro, IEEE, Vol. 16, pp. 42-50.

10. Kusswurm, Daniel. Streaming SIMD Extensions. Modern X86 Assembly Language

Programming. s.l. : Springer, 2014, pp. 179-206.

11. Intel© 64 and IA-32 Architectures Software Developer's Manual. Intel Corporation. April 2015,

Intel Corporation, pp. 109-138.

12. Instituto Politécnico Nacional. Arquitectura de Computadoras Embebidas de Alto Desempeño.

[Online] [Cited: July 1, 2015.] http://www.microse.cic.ipn.mx/emb.hpca.

13. Microse. Microtechnology and Embedded System Lab. Microtechnology and Embedded System

Lab. [Online] June 24, 2015. http://www.microse.cic.ipn.mx/lagarto.

14. The Haswell microarchitecture--4th generation processor. Jain, Tarush and Agrawal, Tanmay.

3, s.l. : Citeseer, 2013, International Journal of Computer Science and Information Technologies,

Vol. 4, pp. 477-480.

15. Hennessy, John L and Patterson, David A. Computer architecture: a quantitative approach.

s.l. : Elsevier, 2011.

91

16. Scaling the power wall: a path to exascale. Villa, Oreste, et al. 2014. Proceedings of the

International Conference for High Performance Computing, Networking, Storage and Analysis. pp.

830-841.

17. Some computer organizations and their effectiveness. Flynn, Michael J. 9, s.l. : IEEE, 1972,

Computers, IEEE Transactions on, Vol. 100, pp. 948-960.

18. SIFT: Design and analysis of a fault-tolerant computer for aircraft control. Wensley, John H, et

al. 10, s.l. : IEEE, 1978, Proceedings of the IEEE, Vol. 66, pp. 1240-1255.

19. Vector architectures: past, present and future. Espasa, Roger, Valero, Mateo and Smith, James

E. 1998. Proceedings of the 12th international conference on Supercomputing. pp. 425-432.

20. Supercomputing with commodity CPUs: are mobile SoCs ready for HPC? Rajovic, Nikola, et al.

2013. High Performance Computing, Networking, Storage and Analysis (SC), 2013 International

Conference for. pp. 1-12.

21. Processor microarchitecture: An implementation perspective. González, Antonio, Latorre,

Fernando and Magklis, Grigorios. 1, s.l. : Morgan \& Claypool Publishers, 2010, Synthesis Lectures

on Computer Architecture, Vol. 5, p. 81.

22. Merging ILP and DLP for High Performance. Espasa, Roger.

23. NVIDIA´s Next Generation CUDA Compute Architecture: Fermi. NVIDIA Corporation. 2009.

24. McCool, Michael D, Robison, Arch D and Reinders, James. Structured parallel programming:

patterns for efficient computation. s.l. : Elsevier, 2012.

25. 64-bit and Multimedia Extensions in the PA-RISC 2.0 Architecture. Lee, Ruby and Huck, Jerry.

1996. Compcon'96.'Technologies for the Information Superhighway'Digest of Papers. pp. 152-160.

26. VIS speeds new media processing. Tremblay, Marc, et al. 4, s.l. : IEEE, 1996, Micro, IEEE, Vol.

16, pp. 10-20.

27. Digital, MIPS add multimedia extensions. Gwennap, Linley. 15, 1996, Microprocessor Report,

Vol. 10, pp. 24-28.

28. Altivec extension to PowerPC accelerates media processing. Diefendorff, Keith, et al. 2, s.l. :

IEEE, 2000, Micro, IEEE, Vol. 20, pp. 85-95.

29. Intel Corporation. Processors - Define SSE2, SSE3 and SSE4. [Online] July 26, 2015.

http://www.intel.com/support/processors/sb/cs-030123.htm.

30. Intel SSE4 Programming Reference. Intel Corporation. 2007, pp. 7-8.

31. Intel avx: New frontiers in performance improvements and energy efficiency. Firasta, Nadeem,

et al. 2008, Intel white paper.

32. A fully integrated multi-CPU, GPU and memory controller 32nm processor. Yuffe, Marcelo, et

al. 2011. Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE

International. pp. 264-266.

92

33. Reinders, James. Knights Corner: Your Path to Knights Landing. [Online] July 26, 2015.

https://software.intel.com/sites/default/files/managed/e9/b5/Knights-Corner-is-your-path-to-

Knights-Landing.pdf.

34. Sweetman, Dominic. See MIPS run. s.l. : Morgan Kaufmann, 2010.

35. The New York Times. Silicon Graphics to Buy MIPS for $406.1 Million. [Online] July 26, 2015.

http://www.nytimes.com/1992/03/13/business/silicon-graphics-to-buy-mips-for-406.1-

million.html.

36. —. Silicon Graphics to Sell Its Stake in MIPS. [Online] July 26, 2015.

http://www.nytimes.com/1999/01/15/business/silicon-graphics-to-sell-its-stake-in-

mips.html?ref=topics.

37. Imagination Technologies LTD. Acquisition of MIPS Technologies completed. [Online] July 26,

2015. http://www.imgtec.com/news/detail.asp?ID=724.

38. Kjell, Bradley. Programmed Introduction to MIPS Assembly Language. [Online] July 26, 2015.

https://chortle.ccsu.edu/AssemblyTutorial/Chapter-31/ass31_2.html.

39. MIPS Architecture For Programmers Volume I-A: Introduction to the MIPS64 Architecture.

Imagination Technologies LTD. 2014, p. 24.

40. —.Imagination Technologies LTD. 2014, p. 36.

41. —.Imagination Technologies LTD. 2014, pp. 36-38.

42. MIPS SIMD Architecture. Imagination Technologies LTD. 2014, Whitepaper, p. 4.

43. Imagination Technologies LTD. Codescape MIPS SDK. [Online] July 27, 2015.

http://community.imgtec.com/developers/mips/tools/codescape-mips-sdk/.

44. MIPS SIMD programming Optimizing multimedia codecs. Imagination Technologies LTD. 2015,

p. 2.

45. MIPS Toolchain MSA Programmers Guide. Imagination Technologies LTD. 2014, p. 3.

46. Free Software Foundation, Inc. Options for Linking. [Online] July 27, 2015.

https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html.

47. Association, IEEE Standards and others. IEEE Standard for SystemVerilog--unified Hardware

Design, Specification, and Verification Language. s.l. : IEEE, 2010.

48. DE2-115 User Manual. Terasic Technologies Inc. 2012, Terasic Technologies Inc, pp. 11-13.

49. Design of High Speed Kogge-Stone Based Carry Select Adder. Chakali, Pakkiraiah and Patnala,

Madhu Kumar. 2013, International Journal of Emerging Science and Engineering, Vol. 1.

50. Advanced Synthesis Cookbook. Altera Corporation. 2011, Altera complete design suit, pp. 16-

17.

93

51. Cyclone IV Device Handbook Volume 1. Altera Corporation. 2010, Altera Corporation, pp. 15-

16.

52. Efficient FPGA-Based Karatsuba Multipliers for Polynomials over F2. von zur Gathen, Joachim

and Shokrollahi, Jamshid. 2006. Selected Areas in Cryptography. pp. 359-369.

53. Ayers, Grant. mips32r1_xum. [Online] July 28, 2015.

https://github.com/grantae/mips32r1_xum.

54. MIPS Architecture For Programmers Volume I-A: Introduction to the MPIS64 Architecture.

Imagination Technologies LTD. 2014, p. 16.

55. Imagination Technologies LTD. Imagination’s popular Codescape tools now provide MIPS CPU

support and extended Linux/RTOS capabilities. [Online] July 28, 2015.

http://www.imgtec.com/news/detail.asp?ID=840.

56. Mentor Graphics. Sourcery CodeBench. [Online] July 28, 2015.

http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/overview/.

57. Fabrice Bellard. QEMU. [Online] July 02, 2015. http://wiki.qemu.org/Main_Page.

58. Microsoft. Introduction to Instrumentation and Tracing. [Online] July 29, 2015.

https://msdn.microsoft.com/en-us/library/aa983649(VS.71).aspx.

59. New hardware architecture for bit-counting. Dalalah, Ahmed, Baba, Sami and Tubaishat,

Abdallah. 2006. Proceedings of the 5th WSEAS international conference on Applied computer

science. pp. 118-128.

60. MIPS SIMD Architecture. MIPS Technologies, Inc. April 8, 2014, MIPS Technologies, Inc., pp. 1-

28.

61. Tiassou, Kossi, et al. Modeling aircraft operational reliability. Computer Safety, Reliability, and

Security. s.l. : Springer, 2011, pp. 157-170.

62. Intel Architecture Instruction Set Extensions Programming Reference. Intel Corporation.

October 2014, p. 18.

94

16 Annexes

16.1 Joining results from 3R lanes

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

Byte 15

Byte 14

Byte 13

Byte 12

Byte 11

Byte 10

Byte 9

Byte 8

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

Half 7

Half 6

Half 5

Half 4

Half 3

Half 2

Half 1

Half 0

Word 3

Word 2

Word 1

Word 0

Double 1

Double 0

00

01

10

11

DF

[1
:0

]

Figure 61: Selector of vector result format

95

16.2 Detail Implementation of Special 1 unit

Src1

[15:8]

127

[31:24]

[47:40]

[63:56]

[79:72]

[95:88]

[111:104]

[127:120]

[127:0]

[127:120]

[127:0]

8 Sig

Ex

111

[111:104]

8 Sig

Ex

95

[95:88]

8 Sig

Ex

79

[79:72]

8 Sig

Ex

63

[63:56]

8 Sig

Ex

47

[47:40]

8 Sig

Ex

31

[31:24]

8 Sig

Ex

15

[15:8]

8 Sig

Ex

[127:0]

127

[127:112]

16 Sig

Ex

95

[95:80]

16 Sig

Ex

63

[63:48]

16 Sig

Ex

31

[31:16]

16 Sig

Ex

[127:0]

127

[127:96]

32 Sig

Ex

63

[63:32]

32 Sig

Ex

[31:16]

[63:48]

[95:80]

[127:112]

[127:0]

[63:32]

[127:96]

[63:32]

[127:0]

[127:96]

LSB

MSB

LSB

MSB

LSB

MSB

LSB

MSB

LSB

MSB

LSB

MSB

[127:0]

Half

Odd

Signed

Word

Odd

Signed

Double

Odd

Signed

Half

Odd

Unsigned

Word

Odd

Unsigned

Double

Odd

Unsigned

Figure 62: Implementation of special unit 1

96

Src1

[7:0]

119

[23:16]

[37:32]

[55:48]

[71:64]

[87:80]

[103:96]

[119:112]

[127:0]

[119:112]

[127:0]

8 Sig

Ex

103

[103:96]

8 Sig

Ex

87

[87:80]

8 Sig

Ex

71

[71:64]

8 Sig

Ex

55

[55:48]

8 Sig

Ex

37

[37:32]

8 Sig

Ex

23

[23:16]

8 Sig

Ex

7

[7:0]

8 Sig

Ex

[127:0]

111

[111:96]

16 Sig

Ex

79

[79:64]

16 Sig

Ex

47

[47:32]

16 Sig

Ex

15

[15:0]

16 Sig

Ex

[127:0]

95

[95:64]

32 Sig

Ex

31

[31:0]

32 Sig

Ex

[15:0]

[47:32]

[79:64]

[111:96]

[127:0]

[31:0]

[95:64]

[63:32]

[127:0]

[127:96]

LSB

MSB

LSB

MSB

LSB

MSB

LSB

MSB

LSB

MSB

LSB

MSB

[127:0]

Half

Even

Signed

Word

Even

Signed

Double

Even

Signed

Half

Even

Unsigned

Word

Even

Unsigned

Double

Even

Unsigned

Figure 63: Implementation of special unit 1 (cont.)

97

001001

001010

001011

001100

010001

010010

010011

010100

011001

011010

011011

011100

000000

[127:0]Half Odd Signed

Half Odd Unsigned

Half Even Signed

Half Even Unsigned

Word Odd Signed

Word Odd Unsigned

Word Even Signed

Word Even Unsigned

Double Odd Signed

Double Odd Unsigned

Double Even Signed

Double Even Unsigned

Scr1

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

A

[5:0]

[8:6]

[2:0]
LSB

MSB

[8:0]FmtSel

Figure 64: Joining result of special unit 1

98

16.3 Detail implementation of Special 2 unit

[7:0]

[7:0]

[7:0]

LSB

MSB

[15:0]

48 Sig

Ex
15

[63:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

Inm

Immediate Byte

Immediate Half

Immediate Word

Immediate Double

Figure 65: Implementation of the special unit 2

99

001011

001100

001001

001010

010011

010100

010001

010010

011011

011100

011001

011010

100000

101000

110000

111000

000000

[127:0]Half Odd Signed

Half Odd Unsigned

Half Even Signed

Half Even Unsigned

Word Odd Signed

Word Odd Unsigned

Word Even Signed

Word Even Unsigned

Double Odd Signed

Double Odd Unsigned

Double Even Signed

Double Even Unsigned

Immediate Byte

Immediate Half

Immediate Word

Immediate Double

Scr2

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

B

[5:0]

[8:6]

[2:0]
LSB

MSB

[8:0]FmtSel

[127:0]

[127:0]

[127:0]

[127:0]

Figure 66: Result of the special unit 2

100

16.4 Detail implementation of Special 3 unit

[7:0]

[7:0]

[7:0]

LSB

MSB

[63:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

GPR

GPR Byte

GPR Half

GPR Word

GPR Double

Figure 67: Implementation of special unit 3

101

1000

1001

1010

1011

00XX

11XX

01XX

[127:0]GPR Byte

GPR Half

GPR Word

GPR Double

Src 3

Src 3

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

C

[3:0]

[1:0]

[1:0]
LSB

MSB

DF

SrcDest

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

GPR

Figure 68: Result of special unit 3

102

16.5 VSHF unit

Figure 69 shows the VSHF unit. This unit is used to process Vector Data Preserving Shuffle

instruction in 4 vector formats. For the correct implementation of this unit is required a

specific circuit responsible for the operation over each vector format. This circuits are

shown in Figure 70, Figure 71, Figure 72 and Figure 74.

V
S

H
F

[127:0]

VSHF out[127:0]A
[127:0]B
[127:0]C

DF

[1
:0

]

Figure 69: VSHF unit

103

LSB
[127:0]

[127:0]
[255:0]

MSB

A
B

[8i+5:8i]

[4:0]

32

[23:16]

[15:8]

[7:0]

[47:40]

[39:32]

[31:24]

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

[151:144]

[143:136]

[135:128]

[175:168]

[167:160]

[159:152]

[199:192]

[191:184]

[183:176]

[223:216]

[215:208]

[207:200]

[247:240]

[239:232]

[231:224]

[255:248]

M
U

X
 3

2
x
1

[7:0]

C
(8i+6)

(8i+7)

0

1

Byte i

[7
:0

]

[7:0]

For i in

0 .. 15

Figure 70: Implementation of VSHF unit Byte format

104

LSB
[127:0]

[127:0]
[255:0]

MSB

A
B

[16i+5:16i]

[3:0]

16

[47:32]

[31:16]

[15:0]

[95:80]

[79:64]

[63:48]

[143:128]

[127:112]

[111:96]

[191:176]

[175:160]

[159:144]

[239:224]

[223:208]

[207:192]

[255:240]

M
U

X
 1

6
x
1

[15:0]

C
(16i+6)

(16i+7)

0

1

Half i

[1
5
:0

]

[15:0]

For i in

0 .. 7

Figure 71: Implementation of the VSHF unit Halfword format

105

LSB
[127:0]

[127:0]
[255:0]

MSB

A
B

[32i+5:32i]

[2:0]

8

[95:64]

[63:32]

[31:0]

[191:160]

[159:128]

[127:96]

[255:224]

[223:192] M
U

X
 8

x
1

[31:0]

C
(32i+6)

(32i+7)

0

1

Word i

[3
1
:0

]

[31:0]

For i in

0 .. 3

Figure 72: Implementation of the VSHF unit Word format

106

LSB
[127:0]

[127:0]
[255:0]

MSB

A
B

[64i+5:64i]

[1:0]

4

[191:128]

[127:64]

[63:0]

[255:192] M
U

X

4
x
1

[64:0]

C
(64i+6)

(64i+7)

0

1

Double i

[6
4
:0

]

[64:0]

For i in

0 .. 1

Figure 73: Implementation of the VSHF unit Doubleword format

107

16.6 SRLR unit

Figure 74 shows the SRLR unit. This unit perform vector shift right logical rounded vector

bit count shift right logical with rounding. This unit is used to calculate instructions SRLR and

SRLRI. To calculate SRLRI Special unit 2 is used. Figure 75, Figure 76, Figure 77 and Figure 78

shows the implementation of SRLR unit for each vector format.

The elements in vector A are shifted right logical by the number of bits the elements in

vector B specify modulo the size of the element in bits. The most significant discarded bit is

added to the shifted value (for rounding). The operands and results are values in integer

data format specified by df field.

S
R

L
R

[127:0]

SRLR out[127:0]A

[127:0]B

DF

[1
:0

]

Figure 74: SRLR unit

108

For i in

0 .. 15

>>

<<

1

1

[2:0]

[7:0]

[7:0]
[7:0]

[8i+2:8i]

[8i+2:8i]

[8i+7:8i]

[7:0]

[8i+7:8i]

B

A

[6
:0

]

MSB LSB

Round

B

A

[7:0]Round

Byte i

[2
:0

]

Zero

[7
:0

]

[7
:0

]

1

0

[7
:0

]

[7:0]

Zero

Figure 75: Implementation of the SRLR unit byte format

109

For i in

0 .. 7

>>

<<

1

1

[3:0]

[15:0]

[15:0]
[15:0]

[16i+3:16i]

[16i+3:16i]

[16i+15:16i]

[15:0]

[16i+15:16i]

B

A

[1
4
:0

]

MSB LSB

Round

B

A

[15:0]Round

Half i

[3
:0

]

Zero

[1
5
:0

]

[1
5
:0

]

1

0

[1
5
:0

]

[15:0]

Zero

Figure 76: Implementation of the SRLR unit halfword format

110

For i in

0 .. 3

>>

<<

1

1

[4:0]

[31:0]

[31:0]
[31:0]

[32i+4:32i]

[32i+4:32i]

[32i+31:32i]

[31:0]

[32i+31:32i]

B

A

[3
1
:0

]

MSB LSB

Round

B

A

[31:0]Round

Word i

[4
:0

]

Zero

[3
1
:0

]

[3
1
:0

]

1

0

[3
1
:0

]

[31:0]

Zero

Figure 77: Implementation of the SRLR unit word format

111

For i in

0 .. 1

>>

<<

1

1

[5:0]

[63:0]

[63:0]
[63:0]

[64i+5:64i]

[64i+5:64i]

[64i+63:64i]

[63:0]

[64i+63:64i]

B

A

[6
2
:0

]

MSB LSB

Round

B

A

[63:0]Round

Double i

[5
:0

]

Zero

[6
3
:0

]

[6
3
:0

]

1

0

[6
3
:0

]

[63:0]

Zero

Figure 78: Implementation of the SRLR unit doubleword format

112

16.7 SRAR unit

Figure 79 shows the SRAR unit. This unit is used to calculate instructions SRAR and SRARI.

To calculate SRARI Special unit 2 is used to. Figure 80, Figure 81, Figure 82 and Figure 83

shows the implementation of SRLR unit for each vector format.

The elements in vector A are shifted right arithmetic by the number of bits the elements in

vector B specify modulo the size of the element in bits. The most significant discarded bit is

added to the shifted value (for rounding). The operands and results are values in integer

data format df field.

S
R

A
R

[127:0]

SRAR out[127:0]A

[127:0]B

DF

[1
:0

]

Figure 79: SRAR unit

113

For i in

0 .. 15

>>>

<<

1

1

[2:0]

[7:0]

[7:0]
[7:0]

[8i+2:8i]

[8i+2:8i]

[8i+7:8i]

[7:0]

[8i+7:8i]

B

A

[6
:0

]

MSB LSB

Round

B

A

[7:0]Round

Byte i

[2
:0

]

Zero

[7
:0

]

[7
:0

]

1

0

[7
:0

]

[7:0]

Zero

Figure 80: Implementation of the SRAR unit byte format

114

For i in

0 .. 7

>>>

<<

1

1

[3:0]

[15:0]

[15:0]

[16i+3:16i]

[16i+3:16i]

[16i+15:16i]

[15:0]

[16i+15:16i]

B

A

[1
4
:0

]

MSB LSB

Round

B

A

[15:0]Round

Half i

[3
:0

]

Zero

[1
5
:0

]

[1
5
:0

]

1

0

[1
5
:0

]

[15:0]

Zero

Figure 81: Implementation of the SRAR unit halfword format

115

For i in

0 .. 3

>>>

<<

1

1

[4:0]

[31:0]

[31:0]
[31:0]

[32i+4:32i]

[32i+4:32i]

[32i+31:32i]

[31:0]

[32i+31:32i]

B

A

[3
1
:0

]

MSB LSB

Round

B

A

[31:0]Round

Word i

[4
:0

]

Zero

[3
1
:0

]

[3
1
:0

]

1

0

[3
1
:0

]

[31:0]

Zero

Figure 82: Implementation of SRAR unit word format

116

For i in

0 .. 1

>>>

<<

1

1

[5:0]

[63:0]

[63:0]
[63:0]

[64i+5:64i]

[64i+5:64i]

[64i+63:64i]

[63:0]

[64i+63:64i]

B

A

[6
2
:0

]

MSB LSB

Round

B

A

[63:0]Round

Double i

[5
:0

]

Zero

[6
3
:0

]

[6
3
:0

]

1

0

[6
3
:0

]

[63:0]

Zero

Figure 83: Implementation of the SRAR unit doubleword format

117

16.8 SLD unit

Figure 84 shows the interconnection of the SLD unit to one of the 64-bit wide 3R lane. This

is done to use its 64-bit divider. So, we can calculate module between 64-bit general

purpose value and one constant 16, 8, 4 or 2. Figure 85, Figure 86, Figure 87, Figure 88 and

Figure 89 shows the SLD implementation for each vector format. Also using special unit 2

instruction SLDI I executed.

118

LSB
[127:0]

[127:0]
[255:0]

MSB

C
A

va

LSB
[63:0]

[63:0]
[127:0]

MSB

C
A

vb

LSB
[127:64]

[127:64]
[127:0]

MSBC
A

vc
LSB

[15:0]

[15:0]
[31:0]

MSBC
A

vh

LSB
[31:16]

[31:16]
[31:0]

MSBC
A

vi

LSB
[47:32]

[47:32]
[31:0]

MSB

C
A

vj

LSB
[63:48]

[63:48]
[31:0]

MSB

C
A

vk

LSB
[31:0]

[31:0]
[63:0]

MSBC
A

vd

LSB
[63:32]

[63:32]
[63:0]

MSB

C
A

ve

LSB
[95:64]

[95:64]
[63:0]

MSB

C
A

vf

LSB
[127:96]

[127:96]
[63:0]

MSB

C
A

vg
LSB

[79:64]

[79:64]
[31:0]

MSB

C
A

vl

LSB
[95:80]

[95:80]
[31:0]

MSBC
A

vm

LSB
[111:96]

[111:96]
[31:0]

MSBC
A

vn

LSB
[127:112]

[127:112]
[31:0]

MSB

C
A

vo

Lane ctr

Signed

Saturated

u
D

e
c
o
d

e

Sel

Ctr[5:0]

[3:0]

3
R

 6
4

L
a

n
e

[63:0]

3R

Double 0
[63:0]

[63:0]

B

[63:0]

C

[63:0]

[63:0]

M
U

X

4
x
1

[63:0]

16

8

4

2

[63:0]

[63:0]

DF

[63:8]

[63:0]

2
x
1

A

GPR in

Ctr

[5
:0

]

2
x
1

[5:0]

[5:0]

2
x
1

ins

%

Sel

Sel

Sel

[63:0] n

Figure 84: Implementation of SLD unit, input signal generation and “n” signal generation

119

[255:0]

[23:16]

[15:8]

[7:0]

[47:40]

[39:32]

[31:24]

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

M
U

X
 1

6
x
1

[7:0]

n

B
y
te

 0

va

[23:16]

[15:8]

[47:40]

[39:32]

[31:24]

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

[135:128]

M
U

X
 1

6
x
1

[255:0] [7:0]

n

B
y
te

 1

va

[23:16]

[47:40]

[39:32]

[31:24]

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

[143:136]

[135:128]

M
U

X
 1

6
x
1

[7:0][255:0]

n

B
y
te

 2

va

[47:40]

[39:32]

[31:24]

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

[151:144]

[143:136]

[135:128]

M
U

X
 1

6
x
1

[7:0][255:0]

n

B
y
te

 3

va

[47:40]

[39:32]

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

[151:144]

[143:136]

[135:128]

[159:152]

M
U

X
 1

6
x
1

[7:0][255:0]

n

B
y
te

 4

va

[47:40]

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

[151:144]

[143:136]

[135:128]

[167:160]

[159:152]

M
U

X
 1

6
x
1

111[255:0]

B
y
te

 5

va

n

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

[151:144]

[143:136]

[135:128]

[175:168]

[167:160]

[159:152]

M
U

X
 1

6
x
1

[7:0][255:0]

n

B
y
te

 6

va

[71:64]

[63:56]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

[151:144]

[143:136]

[135:128]

[175:168]

[167:160]

[159:152]

[183:176]

M
U

X
 1

6
x
1

[7:0][255:0]

n

B
y
te

 7

va

[71:64]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

[151:144]

[143:136]

[135:128]

[175:168]

[167:160]

[159:152]

[191:184]

[183:176]

M
U

X
 1

6
x
1

[7:0]
[255:0]

n

B
y
te

 8

va

Figure 85: Implementation of the SLD unit byte format

120

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

[151:144]

[143:136]

[135:128]

[175:168]

[167:160]

[159:152]

[199:192]

[191:184]

[183:176]

M
U

X
 1

6
x
1

[7:0][255:0]

B
y
te

 9

va

n

[95:88]

[87:80]

[119:112]

[111:104]

[103:96]

[127:120]

[151:144]

[143:136]

[135:128]

[175:168]

[167:160]

[159:152]

[199:192]

[191:184]

[183:176]

[207:200]

M
U

X
 1

6
x
1

[7:0]
[255:0]

n

B
y
te

 1
0

va

[95:88]

[119:112]

[111:104]

[103:96]

[127:120]

[151:144]

[143:136]

[135:128]

[175:168]

[167:160]

[159:152]

[199:192]

[191:184]

[183:176]

[215:208]

[207:200]

M
U

X
 1

6
x
1

[7:0][255:0]

n
B

y
te

 1
1

va

[119:112]

[111:104]

[103:96]

[127:120]

[151:144]

[143:136]

[135:128]

[175:168]

[167:160]

[159:152]

[199:192]

[191:184]

[183:176]

[223:216]

[215:208]

[207:200]

M
U

X
 1

6
x
1

[7:0][255:0]

n

B
y
te

 1
2

va

[119:112]

[111:104]

[127:120]

[151:144]

[143:136]

[135:128]

[175:168]

[167:160]

[159:152]

[199:192]

[191:184]

[183:176]

[223:216]

[215:208]

[207:200]

[231:224]

M
U

X
 1

6
x
1

[7:0][255:0]

B
y
te

 1
3

va

n

[119:112]
[127:120]

[151:144]

[143:136]

[135:128]

[175:168]

[167:160]

[159:152]

[199:192]

[191:184]

[183:176]

[223:216]

[215:208]

[207:200]

[239:232]

[231:224]

M
U

X
 1

6
x
1

[7:0][255:0]

n

B
y
te

 1
4

va

[127:120]

[151:144]

[143:136]

[135:128]

[175:168]

[167:160]

[159:152]

[199:192]

[191:184]

[183:176]

[223:216]

[215:208]

[207:200]

[247:240]

[239:232]

[231:224]

M
U

X
 1

6
x
1

[7:0][255:0]

n

va

B
y
te

 1
5

Figure 86: Implementation of the SLD unit byte format (cont.)

121

[127:0]

[23:16]

[15:8]

[7:0]

[47:40]

[39:32]

[31:24]

[63:56]

[55:48] M
U

X
 8

x
1

[7:0]

n

vb

[23:16]

[15:8]

[47:40]

[39:32]

[31:24]

[71:64]

[63:56]

[55:48]

M
U

X
 8

x
1

[127:0] [7:0]

n

vb

[23:16]

[47:40]

[39:32]

[31:24]

[71:64]

[63:56]

[55:48]

[79:72]

M
U

X
 8

x
1

[7:0][127:0]

n

vb

[47:40]

[39:32]

[31:24]

[71:64]

[63:56]

[55:48]

[87:80]

[79:72] M
U

X
 8

x
1

[7:0][127:0]

n

vb
[47:40]

[39:32]

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

M
U

X
 8

x
1

[7:0][127:0]

n

vb

[47:40]

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[103:96]

M
U

X
 8

x
1

111[127:0]

vb

n

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[111:104]

[103:96] M
U

X
 8

x
1

[7:0][127:0]

n

vb

[71:64]

[63:56]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

M
U

X
 8

x
1

[7:0][127:0]

n

vb

H
a
lf
 0

H
a
lf
 1

H
a
lf
 2

H
a
lf
 3

H
a
lf
 4

H
a
lf
 5

H
a
lf
 6

H
a
lf
 7

[127:0]

[23:16]

[15:8]

[7:0]

[47:40]

[39:32]

[31:24]

[63:56]

[55:48] M
U

X
 8

x
1

[7:0]

n

vc

[23:16]

[15:8]

[47:40]

[39:32]

[31:24]

[71:64]

[63:56]

[55:48]

M
U

X
 8

x
1

[127:0] [7:0]

n

vc

[23:16]

[47:40]

[39:32]

[31:24]

[71:64]

[63:56]

[55:48]

[79:72]

M
U

X
 8

x
1

[7:0][127:0]

n

vc

[47:40]

[39:32]

[31:24]

[71:64]

[63:56]

[55:48]

[87:80]

[79:72] M
U

X
 8

x
1

[7:0][127:0]

n

vc
[47:40]

[39:32]

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

M
U

X
 8

x
1

[7:0][127:0]

n

vc

[47:40]

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[103:96]

M
U

X
 8

x
1

111[127:0]

vc

n

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[111:104]

[103:96] M
U

X
 8

x
1

[7:0][127:0]

n

vc

[71:64]

[63:56]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

M
U

X
 8

x
1

[7:0][127:0]

n

vc

H
a
lf
 8

H
a
lf
 9

H
a
lf
 1

0
H

a
lf
 1

1

H
a
lf
 1

2
H

a
lf
 1

3
H

a
lf
 1

4
H

a
lf
 1

5

Figure 87: Implementation of the SLD unit halfword format

122

[63:0] [23:16]

[15:8]

[7:0]

[31:24]

M
U

X

4
x
1

[7:0]

n
vd W

o
rd

 0

[23:16]

[15:8]

[39:32]

[31:24] M
U

X

4
x
1

[127:0] [7:0]

n
vd

[23:16]

[47:40]

[39:32]

[31:24]

M
U

X

4
x
1 [7:0][127:0]

n
vd

[47:40]

[39:32]

[31:24]

[55:48]

M
U

X

4
x
1

[7:0][127:0]

n
vd

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

[63:0] [23:16]

[15:8]

[7:0]

[31:24]

M
U

X

4
x
1

[7:0]

n
ve W

o
rd

 4

[23:16]

[15:8]

[39:32]

[31:24] M
U

X

4
x
1

[127:0] [7:0]

n
ve

[23:16]

[47:40]

[39:32]

[31:24]
M

U
X

4
x
1 [7:0][127:0]

n
ve

[47:40]

[39:32]

[31:24]

[55:48]

M
U

X

4
x
1

[7:0][127:0]

n
ve

W
o

rd
 5

W
o

rd
 6

W
o

rd
 7

[63:0] [23:16]

[15:8]

[7:0]

[31:24]
M

U
X

4
x
1

[7:0]

n
vf W

o
rd

 8
[23:16]

[15:8]

[39:32]

[31:24] M
U

X

4
x
1

[127:0] [7:0]

n
vf

[23:16]

[47:40]

[39:32]

[31:24]

M
U

X

4
x
1 [7:0][127:0]

n
vf

[47:40]

[39:32]

[31:24]

[55:48]

M
U

X

4
x
1

[7:0][127:0]

n
vf

W
o

rd
 9

W
o

rd
 1

0
W

o
rd

 1
1

[63:0] [23:16]

[15:8]

[7:0]

[31:24]

M
U

X

4
x
1

[7:0]

n
vg W

o
rd

1
2

[23:16]

[15:8]

[39:32]

[31:24] M
U

X

4
x
1

[127:0] [7:0]

n
vg

[23:16]

[47:40]

[39:32]

[31:24]

M
U

X

4
x
1 [7:0][127:0]

n
vg

[47:40]

[39:32]

[31:24]

[55:48]

M
U

X

4
x
1

[7:0][127:0]

n
vg

W
o

rd

1
3

W
o

rd

1
4

W
o

rd

1
5

Figure 88: Implementation of the SLD unit word format

123

[31:0]
[15:8]

[7:0]

2
x
1

[7:0]

nvh Double 0

[31:0]
[23:16]

[15:8]

2
x
1

[7:0]

nvh Double 1

[31:0]
[15:8]

[7:0]

2
x
1

[7:0]

nvi Double 2

[31:0]
[23:16]

[15:8]

2
x
1

[7:0]

nvi Double 3

[31:0]
[15:8]

[7:0]

2
x
1

[7:0]

nvj Double 4

[31:0]
[23:16]

[15:8]

2
x
1

[7:0]

nvj Double 5

[31:0]
[15:8]

[7:0]

2
x
1

[7:0]

nvk Double 6

[31:0]
[23:16]

[15:8]

2
x
1

[7:0]

nvk Double 7

[31:0]
[15:8]

[7:0]

2
x
1

[7:0]

nvl Double 8

[31:0]
[23:16]

[15:8]

2
x
1

[7:0]

nvl Double 9

[31:0]
[15:8]

[7:0]
2
x
1

[7:0]

nvm Double 10

[31:0]
[23:16]

[15:8]

2
x
1

[7:0]

nvm Double 11

[31:0]
[15:8]

[7:0]

2
x
1

[7:0]

nvn Double 12

[31:0]
[23:16]

[15:8]

2
x
1

[7:0]

nvn Double 13

[31:0]
[15:8]

[7:0]

2
x
1

[7:0]

nvo Double 14

[31:0]
[23:16]

[15:8]

2
x
1

[7:0]

nvo Double 15

Figure 89: Implementation of the SLD unit doubleword format

124

16.9 SPLAT unit

Figure 90 show the implementation of SPLAT unit. It uses module calculated using the circuit

show in Figure 84. Also SPLATI instruction is calculated using Special unit 2. These

instruction replicates vector A element with index given by n (GPR module) to all elements

in vector C. GPR value is interpreted modulo the number of data format df elements in the

destination vector. The operands and results are values in data format df.

[127:0]

A

[23:16]

[15:8]

[7:0]

[47:40]

[39:32]

[31:24]

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

M
U

X
 1

6
x
1

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

n

[127:0]

A [47:32]

[31:16]

[15:0]

[95:80]

[79:64]

[63:48]

[127:112]

[111:96] M
U

X
 8

x
1

[15:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

n

[95:64]

[63:32]

[31:0]

[127:96]

M
U

X

4
x
1

[127:0]

A
[31:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

[127:64]

[63:0]

2
x
1

[127:0]

A
[63:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

00

01

10

11

DF

SPAT

out
[1

:0
]

n

n

Figure 90: SPLAT unit implementation

125

16.10 PCKEV unit

Figure 91 shows the implementation of PCKEV unit for all 4 vector formats. This unit

calculates the PCKEV instruction. Even elements in vector A are copied to the left half of

vector result and even elements in vector B are copied to the right half of vector result. The

operands and results are values in integer data format df field.

[127:0]

A
[23:16]

[7:0]

[39:32]

[71:64]

[55:48]

[87:80]

[119:112]

[103:96]

[127:0]

B [23:16]

[7:0]

[39:32]

[71:64]

[55:48]

[87:80]

[119:112]

[103:96]

[127:0]

LSB

MSB

[127:0]

A
[47:32]

[15:0]

[79:64]

[111:96]

[127:0]

B
[47:32]

[15:0]

[79:64]

[111:96]

[127:0]

MSB

LSB

[95:64]

[31:0]
[127:0]

A

[95:64]

[31:0]
[127:0]

B [127:0]

MSB

LSB

[63:0]

[63:0]
A
B

[127:0]

MSB

LSB

00

01

10

11

DF

PCKEV

out

[1
:0

]

Figure 91: PCKEV implementation

126

16.11 PCKOD unit

Figure 92 shows the implementation of PCKOD unit for all 4 vector formats. This unit

calculates the PCKOD instruction. Odd elements in vector A are copied to the left half of

vector result and odd elements in vector B are copied to the right half of vector result. The

operands and results are values in integer data format df field.

[127:0]

A

[15:8]

[47:40]

[31:24]

[63:56]

[95:88]

[79:72]

[111:104]

[127:120]
[127:0]

LSB

MSB

[127:0]

MSB

LSB

[127:0]

MSB

LSB

[127:0]

MSB

LSB

00

01

10

11

DF

PCKOD

out

[1
:0

]

[127:0]

B

[15:8]

[47:40]

[31:24]

[63:56]

[95:88]

[79:72]

[111:104]

[127:120]

[127:0]

A [31:16]

[95:80]

[63:48]

[127:112]

[127:0]

B [31:16]

[95:80]

[63:48]

[127:112]

[63:32]
[127:96]

[127:0]

A

[63:32]
[127:96]

[127:0]

B

[127:64]

[127:64]
A
B

Figure 92: PCKOD implementation

127

16.12 ILVL unit

Figure 93 shows the implementation of ILVL unit for all 4 vector formats. This unit

calculates the ILVL instruction. The left half elements in vectors A and B are copied to

vector result alternating one element from A with one element from B. The operands and

results are values in integer data format df field.

[71:64]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

[71:64]

[79:72]

[87:80]

[95:88]

[111:104]

[119:112]

[127:120]

[103:96]

B

A

[127:0]

MSB

LSB

[79:64]

[127:112]

[111:96]

[95:80]

[79:64]

[95:80]

[111:96]

[127:112]

B
[127:0]

LSB

A
MSB

[95:64]

[127:96]

[95:64]

[127:96]

B
[127:0]

LSB

MSBA

[127:64]

[127:64]
B

[127:0]

LSB

MSBA

00

01

10

11

DF

ILVL

out

[1
:0

]

Figure 93: ILVL unit implementation

128

16.13 ILVR unit

Figure 94 shows the implementation of the ILVR unit for all 4 vector formats. This unit

calculates the ILVR instruction. The right half elements in vectors A and B are copied to

vector result alternating one element from A with one element from B. The operands and

results are values in integer data format df field.

[7:0]

[31:24]

[23:16]

[15:8]

[55:48]

[47:40]

[39:32]

[63:56]

[7:0]

[15:8]

[23:16]

[31:24]

[47:40]

[55:48]

[63:56]

[39:32]

B

A

[127:0]

MSB

LSB

[15:0]

[63:48]

[47:32]

[31:16]

[15:0]

[31:16]

[47:32]

[63:48]

B
[127:0]

LSB

A
MSB

[31:0]

[63:32]

[31:0]

[63:32]

B
[127:0]

LSB

MSBA

[63:0]

[63:0]
B

[127:0]

LSB

MSBA

00

01

10

11

DF

ILVR

out

[1
:0

]

Figure 94: ILVR unit implementation

129

16.14 ILVEV unit

Figure 95 shows the implementation of ILVEV unit for all 4 vector formats. This unit

calculates the ILVEV instruction. Even elements in vectors A and B are copied to vector result

alternating one element from A with one element from B. The operands and results are

values in integer data format df field.

[127:0]

B [23:16]

[7:0]

[39:32]

[71:64]

[55:48]

[87:80]

[119:112]

[103:96]

[127:0]

A

[23:16]

[7:0]

[39:32]

[71:64]

[55:48]

[87:80]

[119:112]

[103:96]

[127:0]

LSB

MSB

[127:0]

A

[47:32]

[15:0]

[79:64]

[111:96]

[127:0]

B

[47:32]

[15:0]

[79:64]

[111:96]

[127:0]

MSB

LSB

[95:64]

[31:0]

[127:0]

[95:64]

[31:0]

[127:0]

[127:0]

MSB

LSB

[63:0]

[63:0]

A
B

[127:0]

MSB

LSB

00

01

10

11

DF

ILVEV

out
[1

:0
]

Figure 95: ILVEV unit implementation

130

16.15 ILVOD unit

Figure 96 show the implementation of the ILVOD unit for all 4 vector formats. This unit

executes the instruction ILVOD. Odd elements in vectors A and B are copied to vector result

alternating one element from A with one element from B. The operands and results are

values in integer data format df field.

[127:0]

B [31:24]

[15:8]

[47:40]

[79:72]

[63:56]

[95:88]

[127:120]

[111:104]

[127:0]

A

[31:24]

[15:8]

[47:40]

[79:72]

[63:56]

[95:88]

[127:120]

[111:104]

[127:0]

LSB

MSB

[127:0]

A

[63:48]

[31:16]

[95:80]

[127:112]

[127:0]

B

[63:48]

[31:16]

[95:80]

[127:112]

[127:0]

MSB

LSB

[127:96]

[63:32]

[127:0]

A [127:96]

[63:32]

[127:0]B
[127:0]

MSB

LSB

[127:64]

[127:64]

A
B

[127:0]

MSB

LSB

00

01

10

11

DF

ILVOD

out
[1

:0
]

Figure 96: Implementation of ILVOD unit

131

16.16 Insert unit

Figure 97 shows the implementation of unit insert for all 4 formats. This unit is used to

execute the instruction Insert. This instruction takes a value from the general purpose

register and insert this value in one element of vector read form port C of the vector register

file.

[127:0]

M
a
s
k

dfn
128

128

[127:0]C

1
x
1
6

[7:0]

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

1
x
8

1
x
4

1
x
2

[15:0]

[31:0]

[63:0]

GPR

in

00

01

10

11

DF
[1

:0
]

[1
2
7

:0
]

[1
2
7

:0
]

[127:0]

Insert

out

dfn

dfn

dfn

dfn

Figure 97: Implementation of Insert unit

132

16.17 INSVE unit

Figure 98 shows the implementation of Insve unit. This is similar to insert unit but this one

takes an element from vector A and insert it on vector C.

[127:0]

M
a
s
k

dfn
128

128

[127:0]C

1
x
1
6

[7:0]

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

1
x
8

1
x
4

1
x
2

[15:0]

[31:0]

[63:0]

[127:0]

A

00

01

10

11

DF

[1
:0

]

[1
2
7

:0
]

[1
2
7

:0
]

[127:0]

Insve

out

dfn

dfn

dfn

dfn

Figure 98: Implementation of Insve unit

133

16.18 Dot Product unit

Figure 99, Figure 100 and Figure 101 shows the implementation of dot product unit for

formats halfword, word and doubleword. Figure 102 shows the multiplexor that choose one

format result. This unit executes instructions DOTP_S, DOTP_U. DPADD_S, DPADD_U,

DPSUB_S and DPSUB_U.

[7:0]
Sign

Ext

[7:0]

[15:0]

LSB

MSB

Signed

[7:0]
Sign

Ext

[7:0]

[15:0]

LSB

MSB

Signed

[15:8]
Sign

Ext

[15:8]

[15:0]

LSB

MSB

Signed

[15:8]
Sign

Ext

[15:8]

[15:0]

LSB

MSB

Signed

[1
5
:0

]
[1

5
:0

]

Add/Sub

[1
5
:0

]

[15:0]

[15:0]

A

[1
6
i+

1
5
:1

6
i]

B

[1
6
i+

1
5
:1

6
i]

C

[16i+15:16i]

Dot H

[16i+15:16i]

Fused H

[16i+15:16i]

For i in

0 .. 7

Lane ctr

Signed

Saturated

u
D

e
c
o
d

e

Signed

Add/Sub

[3:0]

Figure 99: Implementation of Dotproduct unit for halword format

134

[15:0]
Sign

Ext

[15:0]

[31:0]

LSB

MSB

Signed

[15:0]
Sign

Ext

[15:0]

[31:0]

LSB

MSB

Signed

[31:16]
Sign

Ext

[31:16]

[31:0]

LSB

MSB

Signed

[31:16]
Sign

Ext

[31:16]

[31:0]

LSB

MSB

Signed
[3

1
:0

]
[3

1
:0

]

Add/Sub

[3
1
:0

]

[31:0]

[31:0]

A

[3
2
i+

3
1
:3

2
i]

B

[3
2
i+

3
1
:3

2
i]

C

[32i+31:32i]

Dot W

[32i+31:32i]

Fused W

[32i+31:32i]

For i in

0 .. 3

Lane ctr

Signed

Saturated

u
D

e
c
o
d

e

Signed

Add/Sub

[3:0]

Figure 100: Implementation of Dotproduct for word format

135

[31:0]
Sign

Ext

[31:0]

[63:0]

LSB

MSB

Signed

[31:0]
Sign

Ext

[31:0]

[63:0]

LSB

MSB

Signed

[63:32]
Sign

Ext

[63:32]

[63:0]

LSB

MSB

Signed

[63:32]
Sign

Ext

[63:32]

[63:0]

LSB

MSB

Signed
[6

3
:0

]
[6

3
:0

]

Add/Sub

[6
3
:0

]

[63:0]

[63:0]

A

[6
4
i+

6
3
:6

4
i]

B

[6
4
i+

6
3
:6

4
i]

C

[64i+63:64i]

Dot D

[64i+63:64i]

Fused D

[64i+63:64i]

For i in

0 .. 1

Lane ctr

Signed

Saturated

u
D

e
c
o
d

e

Signed

Add/Sub

[3:0]

Figure 101: Implementation of Dotproduct for doubleword format

136

11

10

01

00

[127:0]

DF

Dot out

[1
:0

]

Dot D

Dot W

Dot H

[127:0]

[127:0]

[127:0]

11

10

01

00

[127:0]

DF

Fused

Dot out

[1
:0

]

Fused D

Fused W

Fused H

[127:0]

[127:0]

[127:0]

Figure 102: Selection of results from Dotproduct

137

16.19 Population count unit

Figure 105 shows the population count unit for all 4 vector formats. This unit executes the

PNCT instruction. This unit is composed for 16-byte population counter. Figure 103 shows

how each one is made. Adding some full and half adder we can obtain 16-bit, 32-bit and 64-

bit population counts. An example of 16-bit population count base on 8-bit population

count is show in Figure 104.

Figure 103: Population counter for a byte.

138

Figure 104: Population counter for a halfword.

The total number of logic gates for Figure 103 is as follows: 5 * 2 FA + 2 * 9 HA + 2 OR = 30

logic gates. The design of Figure 103 is for an input of 8-bit. However, we can duplicate the

number of input bits (i.e., 16-bit) by duplicating the circuit above and adding another layer

which consists of three FAs and one HA to get an output of 5 bits, as shown below in Figure

104.

139

00

01

10

11

DF

Population

out

[1
:0

]

[127:0]

C
o
u

n
t

B
y
te

[127:0]

C
o
u

n
t

H
a
lf

[127:0]

C
o
u

n
t

W
o

rd

[127:0]

C
o
u

n
t

D
o
u

b
le

[127:0]

A

Figure 105: Population counter unit

140

16.20 Leading Ones/Zeros unit

Figure 107 shows the Leading counting unit for all 4 vector formats. This unit executes

instructions NLOC and NLZC. The leading counting unit is made of leading one counters of

a byte. One of them is shown in Figure 106. Negating the input we can count zeros instead

ones.

0

1

2
3

4
5

6
7

[7:0]

0

[3:0]

[7:0]

A

[7
:0

] L
e

a
d

in
g

O
n

e
s
 B

0

LSB

MSB

Figure 106: Leading byte counting

141

00

01

10

11

DF

Leading

out

[1
:0

]

[127:0]

L
e

a
d

in
g

O
n

e
s
 B

y
te

[127:0]

L
e

a
d

in
g

O
n

e
s
 H

a
lf

[127:0]

L
e

a
d

in
g

O
n

e
s
 W

o
rd

[127:0]

L
e

a
d

in
g

O
n

e
s
 D

o
u

b
le

[127:0]

A
[127:0]

0

1

Ones/

Zeros

Figure 107: Leading counting unit

16.21 Vector Operations unit

There are 7 instructions (Table 18) that are independent of the vector format. They are

executed at bit level over the whole vector. Figure 108 shows the circuits used to perform

these vector operations. These instructions are AND, OR, NOR, XOR, BMNZ, BMZ and BSEL.

Also using the special unit 2 immediate version of these instructions are executed too (Table

18).

Mnemonic Type Description

AND.V VEC Vector Logical And

BMNZ.V VEC Vector Bit Move If Not Zero

BMZ.V VEC Vector Bit Move If Zero

BSEL.V VEC Vector Bit Select

NOR.V VEC Vector Logical Negated Or

OR.V VEC Vector Logical Or

XOR.V VEC Vector Logical Exclusive Or

142

Mnemonic Type Description

ANDI.B I8 Immediate Logical And

BMNZI.B I8 Immediate Bit Move If Not Zero

BMZI.B I8 Immediate Bit Move If Zero

BSELI.B I8 Immediate Bit Select

NORI.B I8 Immediate Logical Negated Or

ORI.B I8 Immediate Logical Or

XORI.B I8 Immediate Logical Exclusive Or
Table 18: Vector instructions

128

128

128

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

128
[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

[127:0]

A

B

AND

out

A

B

OR

out

A

B

NOR

out

A

B

XOR

out

128
[127:0]

[127:0]

128
128

A

[127:0]

[127:0]
B

C

[127:0]

BMNZ

out

128
[127:0]

[127:0]

128
128

A

[127:0]

[127:0]
B

C

[127:0]

BMZ

out

128
[127:0]

[127:0]

128
128

A

[127:0]

[127:0]
C

B

[127:0]

BSEL

out

Figure 108: Vector operations

143

16.22 SHF unit

Figure 109 shows the implementation of SHF unit for byte, halfword and word vector

formats. This unit executes instruction SHF. The set shuffle instruction works on 4-element

sets in df data format. All sets are shuffled in the same way: the element i82i+1..2i in A is

copied over the element i in C, where i is 0, 1, 2, 3. The operands and results are values in

byte data format.

144

M
U

X

4
x
1

[23:16]

[15:8]

[7:0]

[47:40]

[39:32]

[31:24]

[71:64]

[63:56]

[55:48]

[95:88]

[87:80]

[79:72]

[119:112]

[111:104]

[103:96]

[127:120]

M
U

X

4
x
1

M
U

X

4
x
1

M
U

X

4
x
1

[7:0]

[7:0]

[7:0] LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

A

[15:0]

[1:0]

[3:2]

[5:4]

[7:6]

Imm

[63:0]

[31:0]

[127:96]

[95:64]

M
U

X

4
x
1

LSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

A
[15:0] [1:0]

Imm

MSB

M
U

X

4
x
1

[47:32]

[31:16]

[15:0]

[95:80]

[79:64]

[63:48]

[127:112]

[111:96]

M
U

X

4
x
1

[15:0]

[15:0]

[15:0] LSB

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

A
[15:0]

[1:0]

[3:2]

Imm

MSB

M
U

X
 4

x
1

DF

SHF

out
[1

:0
]

[127:0]

145

Figure 109: SHF implementation

16.23 SAT unit

Figure 110, Figure 111, Figure 112 and Figure 113 shows the implementation of SAT unit for

all 4 vector formats. This unit executes SAT_S and SAT_U instructions. See Saturated

Arithmetic for more details.

<<

0xFF

[1
5
:0

]

[2:0]

DFM

A

[15:8]

>

[8i+7:8i]

>
XX10

0X11

11X1

0X01

10X1
A

[8i+7:8i]

LSB

MSB

For i in

0 .. 15

Byte i

Signed

Figure 110: SAT unit implementation for byte format

146

<<

[3:0]

DFM

A

[31:16]

>

[16i+15:16i]

>
XX10

0X11

11X1

0X01

10X1
A

[16i+15:16i]

LSB

MSB

For i in

0 .. 7

Half i

Signed

0XFFFF

Figure 111: SAT implementation for halfword format

<<

[4:0]

DFM

A

[63:32]

>

[32i+31:32i]

>
XX10

0X11

11X1

0X01

10X1
A

[32i+31:32i]

LSB

MSB

For i in

0 .. 3

Word i

Signed

0XFFFFFFFF

Figure 112: SAT implementation for word format

147

<<

[5:0]

DFM

A

[127:64]

>

[64i+63:64i]

>
XX10

0X11

11X1

0X01

10X1
A

[64i+63:64i]

LSB

MSB

For i in

0 .. 1

Double i

Signed

0XFFFFFFFF

FFFFFFFF

Figure 113: SAT implementation for Doubleword format

148

16.24 CEQ unit

Figure 114 shows the implementation of CEQ unit for all 4 vector formats. This unit executes

CEQ and CEQI instructions using the special unit 2. CEQ unit set all bits to 1 in vector result

elements if the corresponding A and B elements are equal, otherwise set all bits to 0. The

operands and results are values in integer data format df field.

149

=

[8i+7:8i]A

[8i+7:8i]B

[8i+7:8i]

=

[16j+15:16j]A

[16j+15:16j]B

[16j+15:16j]

For i in

0 .. 15

For j in

0 .. 7

=

[32k+31:32k]A

[32k+31:32k]B

[32k+31:32k]

=

[64l+63:64l]A

[64l+63:64l]B

[64l+63:64l]

For k in

0 .. 3

For l in

0 .. 1

Half k

Double l

Byte i

Word j

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

Byte 15

Byte 14

Byte 13

Byte 12

Byte 11

Byte 10

Byte 9

Byte 8

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

Half 7

Half 6

Half 5

Half 4

Half 3

Half 2

Half 1

Half 0

Word 3

Word 2

Word 1

Word 0

Double 1

Double 0

00

01

10

11

DF

CEQ out

[1
:0

]

Figure 114: Implementation of CEQ unit

150

16.25 CLT unit

Figure 115 shows the implementation of the CLT unit for all 4 vector formats. Using the

special unit 2, this unit can execute 4 instructions. They are CLT_S, CLT_U, CLTI_S and

CLTI_U. CLT unit set all bits to 1 in vector result elements if the corresponding A elements

are signed/unsigned (depending on signed flag) less than B elements, otherwise set all bits

to 0. The operands and results are values in integer data format df field.

151

B

<
[8i+7:8i]

A

[8i+7:8i]

For i in

0 .. 15

Byte i

[8:0]

[8:0]

Signed

[8i+7:8i]

Signed

B

<
[16j+15:16j]

A

[16j+15:16j]

For j in

0 .. 7

Half j

[16:0]

[16:0]

Signed

[16j+15:16j]

Signed

B

<
[32k+31:32k]

A

[32k+31:32k]

For k in

0 .. 3

Word

k

[32:0]

[32:0]

Signed

(32k+31)

[32k+31:32k]

Signed

B

<
[64l+63:64l]

A

[64l+63:64l]

For l in

0 .. 1

Double l

[64:0]

[64:0]

Signed

[64l+63:64l]

Signed

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

Byte 15

Byte 14

Byte 13

Byte 12

Byte 11

Byte 10

Byte 9

Byte 8

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

Half 7

Half 6

Half 5

Half 4

Half 3

Half 2

Half 1

Half 0

Word 3

Word 2

Word 1

Word 0

Double 1

Double 0

00

01

10

11

DF

CLT out

[1
:0

]

Figure 115: Implementation of CLT unit

16.26 CLE unit

Figure 116 shows the implementation of the CLR unit for all 4 vector formats. Using the

special unit 2, this unit can execute 4 instructions. They are CLE_S, CLE_U, CLEI_S and

CLEI_U. CLE unit set all bits to 1 in vector result elements if the corresponding A elements

152

are signed/unsigned (depending on signed flag) less than or equal to B elements, otherwise

set all bits to 0. The operands and results are values in integer data format df field.

B

<=
[8i+7:8i]

A

[8i+7:8i]

For i in

0 .. 15

Byte i

[8:0]

[8:0]

Signed

[8i+7:8i]

Signed

B

<=
[16j+15:16j]

A

[16j+15:16j]

For j in

0 .. 7

Half j

[16:0]

[16:0]

Signed

[16j+15:16j]

Signed

B

<=
[32k+31:32k]

A

[32k+31:32k]

For k in

0 .. 3

Word

k

[32:0]

[32:0]

Signed

(32k+31)

[32k+31:32k]

Signed

B

<=
[64l+63:64l]

A

[64l+63:64l]

For l in

0 .. 1

Double l

[64:0]

[64:0]

Signed

[64l+63:64l]

Signed

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

Byte 15

Byte 14

Byte 13

Byte 12

Byte 11

Byte 10

Byte 9

Byte 8

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

Half 7

Half 6

Half 5

Half 4

Half 3

Half 2

Half 1

Half 0

Word 3

Word 2

Word 1

Word 0

Double 1

Double 0

00

01

10

11

DF

CLE out

[1
:0

]

CLE

Hj

CLE

Dl
CLE

Wk

CLE

Bi

Figure 116: Implementation of CLE unit

153

16.27 MAX unit

Figure 117 shows the implementation of the MAX unit for all 4 vector formats. Using the

special unit 2, this unit can execute 4 instructions. They are MAX_S, MAX_U, MAXI_S and

MAXI_U. Maximum values between signed elements in vector B and signed/unsigned

elements in vector A are written to vector result. The operands and results are values in

integer data format df field.

154

[8i+7:8i] 1

0[8i+7:8i]
[8i+7:8i]

B

A

For i in

0 .. 15

Byte i

CLE

Bi

[16j+15:16j] 1

0[16j+15:16j]
[16j+15:16j]

B

A

For j in

0 .. 7

Half j

CLE

Hj

[32k+31:32k] 1

0[32k+31:32k]
[32k+31:32k]

B

A

For k in

0 .. 3

Word k

CLE

Wk

[64l+63:64l] 1

0[64l+63:64l]
[64l+63:64l]

B

A

For l in

0 .. 1

Double l

CLE

Dl

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

Byte 15

Byte 14

Byte 13

Byte 12

Byte 11

Byte 10

Byte 9

Byte 8

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

Half 7

Half 6

Half 5

Half 4

Half 3

Half 2

Half 1

Half 0

Word 3

Word 2

Word 1

Word 0

Double 1

Double 0

00

01

10

11

DF

MAX out

[1
:0

]

Figure 117: Implementation of MAX unit

155

16.28 MIN unit

Figure 118 shows the implementation of the MIN unit for all 4 vector formats. Using the

special unit 2, this unit can execute 4 instructions. They are MIN_S, MIN_U, MINI_S and

MINI_U. Minimum values between signed elements in vector B and signed elements in

vector A are written to vector result. The operands and results are values in integer data

format df field.

156

[8i+7:8i] 1

0[8i+7:8i]
[8i+7:8i]

A

B

For i in

0 .. 15

[16j+15:16j] 1

0[16j+15:16j]
[16j+15:16j]

A

B

For j in

0 .. 7

[32k+31:32k] 1

0[32k+31:32k]

[32k+31:32k]

A

B

For k in

0 .. 3

[64l+63:64l] 1

0[64l+63:64l]
[64l+63:64l]

A

B

For l in

0 .. 1

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

Byte 15

Byte 14

Byte 13

Byte 12

Byte 11

Byte 10

Byte 9

Byte 8

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

Half 7

Half 6

Half 5

Half 4

Half 3

Half 2

Half 1

Half 0

Word 3

Word 2

Word 1

Word 0

Double 1

Double 0

00

01

10

11

DF

MIN out

[1
:0

]

Byte i

CLE

Bi

Half j

CLE

Hj

Word k

CLE

Wk

Double l

CLE

Dl

Figure 118: Implementation of MIN unit

157

16.29 MAX MN unit

Figure 119, Figure 120 and Figure 121 shows the implementation of the MAX MIN unit for

all 2 vector formats. This unit uses the absolute values generated in Figure 40. This unit

calculates instructions MAX_A and MIN_A. The value with the largest magnitude, i.e.

absolute value, between corresponding signed/unsigned elements in vector A and vector B

are written to vector result. The minimum negative value representable has the largest

absolute value. The operands and results are values in integer data format df field.

abs(B)

>

abs(A)

For i in

0 .. 15

[8i+7:8i]

[8i+7:8i]

>
For j in

0 .. 7

[16j+15:16j]

[16j+15:16j]

>
For k in

0 .. 3

[32k+31:32k]

[32k+31:32k]

>
For l in

0 .. 1

[64l+63:64l]

[64l+63:64l]

MAX A

Hj

MAX A

Dl

MAX A

Wk

MAX A

Bi

abs(B)

abs(A)

abs(B)

abs(A)

abs(B)

abs(A)

Figure 119: Implementation of MAX MIN unit

158

[8i+7:8i] 1

0[8i+7:8i]
[8i+7:8i]

B

A

For i in

0 .. 15

Byte i
[16j+15:16j] 1

0[16j+15:16j]
[16j+15:16j]

B

A

For j in

0 .. 7

[32k+31:32k] 1

0[32k+31:32k]
[32k+31:32k]

B

A

For k in

0 .. 3

[64l+63:64l] 1

0[64l+63:64l]
[64l+63:64l]

B

A

For l in

0 .. 1

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

Byte 15

Byte 14

Byte 13

Byte 12

Byte 11

Byte 10

Byte 9

Byte 8

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

Half 7

Half 6

Half 5

Half 4

Half 3

Half 2

Half 1

Half 0

Word 3

Word 2

Word 1

Word 0

Double 1

Double 0

00

01

10

11

DF

MAX A

out

[1
:0

]

MAX A

Bi

Half j

MAX A

Hj

Word k

MAX A

Wk

Double l

MAX A

Dl

Figure 120: Implementation of MX MIN unit (cont.)

159

[8i+7:8i] 1

0[8i+7:8i]
[8i+7:8i]

A

B

For i in

0 .. 15

[16j+15:16j] 1

0[16j+15:16j]
[16j+15:16j]

A

B

For j in

0 .. 7

[32k+31:32k] 1

0[32k+31:32k]

[32k+31:32k]

A

B

For k in

0 .. 3

[64l+63:64l] 1

0[64l+63:64l]
[64l+63:64l]

A

B

For l in

0 .. 1

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

Byte 15

Byte 14

Byte 13

Byte 12

Byte 11

Byte 10

Byte 9

Byte 8

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

Half 7

Half 6

Half 5

Half 4

Half 3

Half 2

Half 1

Half 0

Word 3

Word 2

Word 1

Word 0

Double 1

Double 0

00

01

10

11

DF

MIN A out

[1
:0

]

Byte i

MAX A

Bi

Half j

MAX A

Hj

Word k

MAX A

Wk

Double l

MAX A

Dl

Figure 121: MAX MIN unit implementation (cont.)

160

16.30 SLL unit

Figure 122 shows the implementation of the SLL unit for all 2 vector formats. Using the

special unit 2, this unit can execute 4 instructions. They are SLL and SLLI instructions. The

elements in vector A are shifted left by the number of bits the elements in vector B specify

modulo the size of the element in bits. The result is written to vector result. The operands

and results are values in integer data format df field.

161

For i in

0 .. 15

<<

[8i+2:8i]

[8i+7:8i]

B

A [8i+7:8i]

Byte i

For j in

0 .. 7

<<

[16j+3:15j]

[16j+15:15j]

B

A [16j+15:15j]

Half j

For k in

0 .. 3

<<

[32k+4:32k]

[32k+31:32k]

B

A [32k+31:32k]

Word k

For l in

0 .. 1

<<

[64l+5:64l]

[64l+63:64l]

B

A [64l+63:64l]

Double l

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

Byte 15

Byte 14

Byte 13

Byte 12

Byte 11

Byte 10

Byte 9

Byte 8

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

Half 7

Half 6

Half 5

Half 4

Half 3

Half 2

Half 1

Half 0

Word 3

Word 2

Word 1

Word 0

Double 1

Double 0

00

01

10

11

DF

SLL out

[1
:0

]

Figure 122: Implementation of SLL unit

162

16.31 SRA unit

Figure 123 shows the implementation of the SRA unit for all 4 vector formats. Using the

special unit 2, this unit can execute 2 instructions. They are SRA and SRAI instructions. The

elements in vector A are shifted right arithmetic by the number of bits the elements in

vector B specify modulo the size of the element in bits. The result is written to vector result.

The operands and results are values in integer data format df field.

163

For i in

0 .. 15

>>>

[8i+2:8i]

[8i+7:8i]

B

A [8i+7:8i]

Byte i

For j in

0 .. 7

>>>

[16j+3:15j]

[16j+15:15j]

B

A [16j+15:15j]

Half j

For k in

0 .. 3

>>>

[32k+4:32k]

[32k+31:32k]

B

A [32k+31:32k]

Word k

For l in

0 .. 1

>>>

[64l+5:64l]

[64l+63:64l]

B

A [64l+63:64l]

Double l

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

Byte 15

Byte 14

Byte 13

Byte 12

Byte 11

Byte 10

Byte 9

Byte 8

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

Half 7

Half 6

Half 5

Half 4

Half 3

Half 2

Half 1

Half 0

Word 3

Word 2

Word 1

Word 0

Double 1

Double 0

00

01

10

11

DF

SRA out

[1
:0

]

Figure 123: Implementation of SRA unit

164

16.32 SRL unit

Figure 124 shows the implementation of the SRL unit for all 4 vector formats. Using the

special unit 2, this unit can execute 2 instructions. They are SRL and SRLI instructions. The

elements in vector A are shifted right logical by the number of bits the elements in vector B

specify modulo the size of the element in bits. The result is written to vector result. The

operands and results are values in integer data format df field.

165

For i in

0 .. 15

>>

[8i+2:8i]

[8i+7:8i]

B

A [8i+7:8i]

Byte i

For j in

0 .. 7

>>

[16j+3:15j]

[16j+15:15j]

B

A [16j+15:15j]

Half j

For k in

0 .. 3

>>

[32k+4:32k]

[32k+31:32k]

B

A [32k+31:32k]

Word k

For l in

0 .. 1

>>

[64l+5:64l]

[64l+63:64l]

B

A [64l+63:64l]

Double l

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

Byte 15

Byte 14

Byte 13

Byte 12

Byte 11

Byte 10

Byte 9

Byte 8

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

Half 7

Half 6

Half 5

Half 4

Half 3

Half 2

Half 1

Half 0

Word 3

Word 2

Word 1

Word 0

Double 1

Double 0

00

01

10

11

DF

SRL out

[1
:0

]

Figure 124: Implementation of SRL unit

166

16.33 BIT unit

Figure 125 and Figure 126 shows the implementation of the BIT unit for all 4 vector formats.

Using the special unit 2, this unit can execute 6 instructions. They are BCLR, BSET, BNEG,

BCLRI, BSETI and BNEGI.

<<

[1
5
:0

]

[16j+3:16j]

B

[15:0]

[16j+15:16j]

For j in

0 .. 7

16

16

A
16

Half j

Lane ctr

Signed

Saturated

u
D

e
c
o
d

e

Sel
[3:0]

M
U

X
 3

x
1

[16j+15:16j]

Sel

<<

1

[8i+2:8i]

B

[7:0]

[8i+7:8i]

For i in

0 .. 15

8

8

A
8

Byte i

M
U

X
 3

x
1

[8i+7:8i]

Sel

1

<<

[6
3
:0

]

[16j+3:16j]

B

[63:0]

[64l+63:64l]

For l in

0 .. 1

64

64

A
64

Double l

M
U

X
 3

x
1

[64l+63:64l]

Sel

<<

1

[32k+4:32k]

B

[31:0]

[32k+31:32k]

For k in

0 .. 3

32

32

A
32

Word i

M
U

X
 3

x
1

[32k+31:32k]

Sel

1

Figure 125: Implementation of BIT unit

167

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

Byte 15

Byte 14

Byte 13

Byte 12

Byte 11

Byte 10

Byte 9

Byte 8

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

Half 7

Half 6

Half 5

Half 4

Half 3

Half 2

Half 1

Half 0

Word 3

Word 2

Word 1

Word 0

Double 1

Double 0

00

01

10

11

DF

Bit out

[1
:0

]

Figure 126: Implementation of BIT unit (cont.)

168

16.34 BINSL unit

Figure 127 shows the implementation of BINSL unit for all 4 vector formats. This unit using

the special unit 2 executes instructions BINSL and BINSLI. To select the output format circuit

shows in Figure 129 is used. Copy most significant (left) bits in each element of vector A to

elements in vector C while preserving the least significant (right) bits. The number of bits to

copy is given by the elements in vector B modulo the size of the element in bits plus 1. The

operands and results are values in integer data format df field.

>>
B

[16j+3:16j]

A
[16j+15:16j]

15

1

[3
:0

]

<<
[15:0]

<<
[16j+15:16j]

[3
:0

]

>>
[15:0]

C

16

[1
5
:0

]
[1

5
:0

]

[16j+15:16j]

For j in

0 .. 7

Half j

>>
B

[8i+2:8i]

A
[8i+7:8i]

7

1

[2
:0

]

<<
[7:0]

<<
[8i+7:8i]

[2
:0

]

>>
[7:0]

C

8

[7
:0

]
[7

:0
]

[8i+7:8i]

For i in

0 .. 15

Byte i

>>
B

[64l+5:64l]

A
[64l+63:64l]

63

1

[5
:0

]

<<
[63:0]

<<
[64l+63:64l]

[5
:0

]

>>
[63:0]

C

64

[6
3
:0

]
[6

3
:0

]

[64l+63:64l]

For l in

0 .. 1

Double l

>>
B
[32k+4:32k]

A
[32k+31:32k]

31

1

[4
:0

]

<<
[31:0]

<<
[32k+31:32k]

[4
:0

]

>>
[31:0]

C

32
[7

:0
]

[7
:0

]

[32k+31:32k]

For k in

0 .. 3

Word k

Figure 127: Implementation of BINSL unit

169

16.35 BINSR unit

Figure 128 shows the implementation of BINSR unit. This unit using the special unit 2 can

executes instructions BINSR and BINSRI. To select the output format circuit shows in Figure

129 is used. Copy least significant (right) bits in each element of vector A to elements in

vector C while preserving the most significant (left) bits. The number of bits to copy is given

by the elements in vector B modulo the size of the element in bits plus 1. The operands and

results are values in integer data format df field.

<<
B

[16j+3:16j]

A
[16j+15:16j]

15

1

[3
:0

]

>>
[15:0]

>>
[16j+15:16j]

[3
:0

]

<<
[15:0]

C

16

[1
5
:0

]
[1

5
:0

]

[16j+15:16j]

For j in

0 .. 7

Half j

<<
B

[8i+2:8i]

A
[8i+7:8i]

7

1

[2
:0

]

>>
[7:0]

>>
[8i+7:8i]

[2
:0

]

<<
[7:0]

C

8

[7
:0

]
[7

:0
]

[8i+7:8i]

For i in

0 .. 15

Byte i

<<
B

[64l+5:64l]

A
[64l+63:64l]

63

1

[5
:0

]

>>
[63:0]

>>
[64l+63:64l]

[5
:0

]

<<
[63:0]

C

64

[6
3
:0

]
[6

3
:0

]

[64l+63:64l]

For l in

0 .. 1

Double l

<<
B
[32k+4:32k]

A
[32k+31:32k]

31

1

[4
:0

]

>>
[31:0]

>>
[32k+31:32k]

[4
:0

]

<<
[31:0]

C

32

[7
:0

]
[7

:0
]

[32k+31:32k]

For k in

0 .. 3

Word k

Figure 128: Implementation of BINSR unit

170

16.36 Join results

Figure 129 shows the circuit used by almost every unit that chose the output result format.

Al possible formats are always executes but just only one of them has sense.

[7:0]

[7:0]

[7:0]

LSB

MSB

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[127:0]

LSB

MSB
[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[15:0]

[127:0]

LSB

MSB

[31:0]

[31:0]

[31:0]

[31:0]

[127:0]

LSB

MSB

[63:0]

[63:0]
[127:0]

Byte 15

Byte 14

Byte 13

Byte 12

Byte 11

Byte 10

Byte 9

Byte 8

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

Half 7

Half 6

Half 5

Half 4

Half 3

Half 2

Half 1

Half 0

Word 3

Word 2

Word 1

Word 0

Double 1

Double 0

00

01

10

11

DF

Out

[1
:0

]

Figure 129: Result format selection

171

16.37 Branch unit

For branch, MSA uses no global condition flags: compare instructions write the results per

vector element as all zero or all one bit values. Branch instructions test for zero or not zero

elements or vector value. Figure 130 shows the layout of branch instructions. Field COP1 is

decoded by MSA and MIPS32 decoders. Field s16 is used by the MIPS32 core to calculate

the branch address. Fields OP/DF and wt are used by the SIMD unit to evaluate the branch.

The branch instruction has a delay slot. s16 is a PC word offset, i.e. signed count of 32-bit or

64-bit24 instructions, from the PC of the delay slot. Finally the MSA Jump signal is send to

the MIPS32 control unit to take or not take the branch.

Mnemonic Type Description

BNZ.V COP1 Immediate Branch If Not Zero (At Least One Element of Any
Format Is Not Zero)

BNZ.df COP1 Immediate Branch If All Elements Are Not Zero

BZ.df COP1 Immediate Branch If At Least One Element Is Zero

BZ.V COP1 Immediate Branch If Zero (All Elements of Any Format Are Zero)

Table 19: SIMD branch instructions

Figure 130: Layout of branch instructions

24 Depending on the MIPS32 or MIPS64 implementaion runninf MSA

172

[63:0]

[127:64]

[127:0]

B

M
U

X
 4

x
1

Op

Jump

D

uDec

Figure 131: Branch detection of format Doubleword

[31:0]

[63:32]

[127:0]

B

M
U

X
 4

x
1

Op

Jump

W

uDec

[95:64]

[127:96]

LSB

MSB

Figure 132: Branch detection of format Word

173

[15:0]

[31:16]

[127:0]

B

M
U

X
 4

x
1

Op

Jump

H

uDec

[111:96]

[127:112] LSB

MSB

Figure 133: Branch detection of format Halfword

[7:0]

[15:8]

[127:0]

B

M
U

X
 4

x
1

Op

Jump

B

uDec

[119:112]

[127:120] LSB

MSB

Figure 134: Branch detection of format Byte

174

M
U

X

4
x
1

DF

[1
:0

]

Jump B

Jump H

Jump W

Jump D

MSA

Jump

Figure 135: Format selector of branches

	CARTA DE CESIÓN DE DERECHOS
	Resumen
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Context of the project
	1.3 Objectives

	2 State of the Art
	2.1 Origin
	2.2 Parallelism key of performance
	2.3 Vector Architectures
	2.4 SIMD Multimedia extension
	2.5 Graphics Processing Units
	2.6 SIMD History

	3 MIPS Architecture
	3.1 Brief History of MIPS Company
	3.2 History of the MIPS ISA
	3.3 Current MIPS ISA
	3.4 Optional Components
	3.5 Brief description of the optional components available on Release 6

	4 The MIPS® SIMD Architecture module
	4.1 Instruction Decoding and Formats
	4.2 GCC support

	5 Tools and resources
	5.1 Verilog
	5.2 Quartus II
	5.3 DE2-115 board

	6 Basic components
	6.1 Adder
	6.1.1 Ripple Carry Adder
	6.1.2 Carry Look-ahead Adder
	6.1.3 Kogge-Stone Adder
	6.1.4 Adder evaluation

	6.2 Multiplier
	6.3 Divider
	6.4 Multiplexer
	6.5 Saturated Arithmetic

	7 The MIPS SIMD Architecture Instruction Set
	7.1.1 Data Transfer
	7.1.2 Arithmetic
	7.1.3 Comparison
	7.1.4 Logical and Shift
	7.1.5 Unpack and Shuffle
	7.1.6 Insertion and Extraction

	8 Architecture Implementation
	8.1 Overview
	8.2 MIPS32 core
	8.3 Fetch
	8.4 Decode
	8.5 Register File

	9 SIMD execution stage
	9.1 Vector Processing Unit
	9.2 Multipurpose adder lane
	9.3 Multiplier lane
	9.4 Divider circuit
	9.5 Special unit 1
	9.6 Special unit 2
	9.7 Special unit 3

	10 Memory
	10.1 Instruction Memory
	10.2 Data Memory

	11 Software Tools
	11.1 GCC
	11.2 QEMU
	11.3 ModelSim

	12 Evaluation
	12.1 FPGA utilization
	12.2 Benchmarks
	12.2.1 FDCT
	12.2.2 Matmult

	12.3 Summary

	13 Future work
	14 Conclusions
	15 References
	16 Annexes
	16.1 Joining results from 3R lanes
	16.2 Detail Implementation of Special 1 unit
	16.3 Detail implementation of Special 2 unit
	16.4 Detail implementation of Special 3 unit
	16.5 VSHF unit
	16.6 SRLR unit
	16.7 SRAR unit
	16.8 SLD unit
	16.9 SPLAT unit
	16.10 PCKEV unit
	16.11 PCKOD unit
	16.12 ILVL unit
	16.13 ILVR unit
	16.14 ILVEV unit
	16.15 ILVOD unit
	16.16 Insert unit
	16.17 INSVE unit
	16.18 Dot Product unit
	16.19 Population count unit
	16.20 Leading Ones/Zeros unit
	16.21 Vector Operations unit
	16.22 SHF unit
	16.23 SAT unit
	16.24 CEQ unit
	16.25 CLT unit
	16.26 CLE unit
	16.27 MAX unit
	16.28 MIN unit
	16.29 MAX MN unit
	16.30 SLL unit
	16.31 SRA unit
	16.32 SRL unit
	16.33 BIT unit
	16.34 BINSL unit
	16.35 BINSR unit
	16.36 Join results
	16.37 Branch unit

