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Resumen

La dinámica espacial y temporal de un modelo presa-predador basado en autómatas celulares,
donde el movimiento de predadores es modelado a través de un algoritmo de optimización por cumulo
de part́ıculas, es analizada.

Simulaciones de la versión global del modelo, muestran que solo es posible observar la dependencia
de la densidad cuando el factor social de los predadores es lo suficientemente bajo para permitir la
dispersión de individuos a través de la lattice, o cuando la magnitud de las oscilaciones alrededor
de la mejor posición hallada por el enjambre son lo suficientemente grandes para permitir un rápido
movimiento de part́ıculas dentro del autómata celular.

Un análisis cualitativo de la implementación local revela que las interacciones sociales entre preda-
dores provocan la formación de clusters, y que al incrementar la movilidad de los mismos, el modelo
exhibe comportamiento oscilatorio.



Abstract

The spatial and temporal dynamics of a prey-predator model based on cellular automata, where
the movement of predators is modeled through a Particle Swarm Optimization algorithm, is analysed.

Simulations of the global version of the model show that density dependence is only present when
the social factor of predators is low enough to allow the dispersal of individuals across the lattice of
the model, or when the magnitude of the oscillations around the best position found by the swarm are
large enough to allow a fast coordinated movement of particles across the cellular automaton.

A qualitative analysis of the local implementation reveals that the social interactions among preda-
tors provoke the formation of clusters, and that by increasing the mobility of predators the model
exhibits oscillatory behavior.
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Chapter 1

Introduction

1.1. Motivation

Since their creation in the decade of 1950 by John von Neumann and Stanislaw Marcim Ulam,
a great effort has been devoted to the study of the long term dynamics of cellular automata. The
experimental analysis made by Wolfram on elementary cellular automata [1], which ended with the
classification that bears his name, sparkled a great interest in the development of a sound mathematical
foundation that could explain the behavior displayed by these dynamical systems. Wolfram himself
was one of the first in pursuing this goal, in [2] he provided an statistical analysis of the evolution
of elementary cellular automata. Other works have focused on phenomena such as chaos [3] [4] [5],
periodic behavior in the long term time limit [6] [7], or complex dynamics [8], however, the vast
majority of this works deal with transition functions of the deterministic type.

Probabilistic cellular automata can be regarded as generalizations of those that employ determin-
istic rules, one of the first studies of these systems was made by Domany and Kinzel [9], they studied
the phase transitions of a probabilistic model by mapping its behavior to that of an Ising system,
and proved that the resulting behavior was equivalent to a directed percolation process. The results
obtained served as an starting point to other works that studied the phase transitions of the Domany-
Kinzel model, or similar automata [10] [11] [12] [13]. More recent works have investigated the phase
transitions of two-dimensional models [14], ergodicity [15] [16], or critical behavior [17].

Other results concerning the long-term dynamics of probabilistic cellular automata have been ob-
tained in other research fields, here, probabilistic cellular automata are commonly used as a modeling
tool. Of particular interest for this dissertation is the field of ecological modeling, where cellular au-
tomata are used due to their capability to model local the interactions among organisms explicitly,
moreover, probabilistic transition rules are frequently used in order to take into account traits like the
efficiency of a predator, or phenomena like the movement of individuals. Finally, long-term dynamics
of theoretical ecosystems is of great interest to ecologists, who aim to build predictive models, or to
gain a greater understanding of the processes that control an ecosystem.

When observed, the spatial dynamics of cellular automata might appear random, complex, or
even ordered. Such patterns are commonly responsible of the statistical properties that define a
model. Understanding the role that local interactions have in determining the long-term dynamics of
a probabilistic cellular automaton is the main motivation of this dissertation.

1.2. Objectives

The main objective of this research is to describe the long term dynamics, spatial as well as
temporal, of an ecological model based on cellular automata.

1



1.3. LATTICE MODELS IN ECOLOGY

1.2.1. Particular objectives

Development of a prey-predator model based on cellular automata, that serves as an experimental
framework to study the global behavior of a lattice model.

Design of a migration algorithm based on Particle Swarm Optimization (global and local) to
model the movement of predators in a lattice model.

Compare the global and local implementations of the migration algorithm through computer
simulations, analysis of spatial patterns and statistical methods. Such comparison will serve to
perform a qualitative analysis of the local interactions of the model and its effects on the long
term dynamics of the model.

Development of a mean-field model to predict the long-term mean densities of preys and predators
at small and large spatial scales.

1.3. Lattice models in ecology

To mark an exact moment when models based on cellular automata attracted the attention of
ecologists is a difficult task, so instead, we will start with an interesting article by D. A. Dewdney that
appeared in the column ”Computer Recreations” of the Scientific American magazine [18]. The article
describes a model called Wa-Tor, short for ’water torus’, since its only inhabited by sharks and fishes,
and they live in a torus shaped lattice. The rules that govern this model are applied synchronously in
discrete time steps, and are as follows:

A fish moves randomly to one of its four adjacent neighbors, provided that the cell is not already
occupied by a shark or a fish. If the four cells are already occupied, the fish does not move.

A shark checks its four nearest neighbors, if some of them are occupied by fishes, it moves to
one of them at random and then devours the fish. If there are no fishes among its neighbors, a
shark moves just as a fish does, i.e., avoiding other sharks.

Reproduction is controlled by two parameters: fbreed and sbreed determine the number of time
steps that a fish or shark respectively must exist before producing a single offspring. An additional
parameter starve designates the number of time steps that a shark can survive without eating a
fish. The spatial dynamics of the Wa-Tor model show that fishes moving in a region with no sharks,
quickly reproduce to form a school, if such group is discovered by one or more sharks, they attack the
school from the edges and promptly devour most of the group, isolated sharks die from starvation.
Even tough such patterns are at most an over-simplification of a natural process, they show that a
model with an interesting spatial dynamics can be built parting from the explicit description of the
interactions among the members of a theoretical population (later we will review some extension made
to the Wa-Tor model in order to study scaling problems in ecology). A first step is then to define the
evolution rules based on reasonable assumptions about the natural process that is to be studied, if such
assumptions are “correct”, it is expected that the results obtained from the model help to understand
the behavior of the desired process, or even predict some of its statistical properties.

A phenomenon that is particularly useful to study the relationship between spatial patterns and
the long-term dynamics of a lattice model is that of competition. Such phenomenon occurs as an in-
teraction between individuals of the same (intraspecific competition), or different species (interspecific
competition), that share a need for one or more resources [19]. Competition occurs because individ-
uals aggregate at some level, for the intraspecific case, competition depends upon the proximity of
neighbors within a group; for the interspecific case, competition commonly occurs at the boundaries
between organisms of different species. In both cases, however, the spatial arrangement of individuals
determines the level of competition that any individual experiences. Silvertown et al., (see [20]) used
a cellular automaton to study interspecific competition among five species of grass, the automaton
follows a replacement rule in order to model invasion of competitive strong species. The rule is as
follows: at each time step species i in a cell is replaced randomly by a neighbouring species j with

2



1.3. LATTICE MODELS IN ECOLOGY

probability pij weighted by the number of neighbors containing species j. Replacement probabilities
pij were obtained taking as basis a field study on invasion rates in hexagonal plots of grass. Ex-
periments were made to determine the importance of aggregation on the persistence of a competing
species, the results show that if individuals of the five species of grass are placed randomly on the
lattice, the least competing species are rapidly driven to extinction by the more invasive ones (those
with a greater replacement probability). If initial conditions are changed so each species starts in
an aggregated manner, the extinction of the least invasive species is delayed, such outcome is to be
expected, since now competition only occurs at the boundaries between groups of different species. In
the end, however, only the two strongest invaders persist in the long term.

Another study that focus on the coexistence of competing species appears in [21]. The authors
analyse the relationship between the stability of an ecosystem and its complexity (a complex ecosystem
contains a great diversity of species that interact between them), in particular, it is suggested that
complex ecosystems are more stable than simple ones. The model employs a two-dimensional lattice,
where each cell can be in one of 254 different states, each state identifies a different species. A
replacement rule governs the evolution of the model as follows: an individual of species i moves to
another cell, if the cell is occupied by an individual of species j, then with probability pm(i, j) the
individual of species i occupies the target cell and the individual of species j is killed. The rule can
operate in two modes:

Global (mean-field) mode. Individuals move randomly to any cell of the lattice, thus eliminating
any spatial structure of the model, hence the mean-field name.

Local mode. Individuals move randomly to one of their four nearest neighbors, for this mode
the lattice implements reflective boundaries.

Probabilities pm(i, j) are calculated using the “interaction coefficients” aij and aji, these quantities
determines the effects that one species has on the other, which is an analogous treatment to the one
found in other competition models, e.g., if aij < 0 and aji > 0 then species i has a negative effect on
species j, however, species j has a positive effect on species i, these conditions corresponds to a prey-
predator relationship, with species i being the predator. In a competing environment such as the one
used by the authors, it is expected that only some of the species that exist initially survive in the long-
term. The results show that in all instances where the evolution rule operates in local mode, individuals
belonging to the same species aggregate into clusters, such mechanism allows inferior competitors to
survive in zones where the density of strong competitors is low, which results in an ecosystem with a
greater diversity of species than the observed in the simulations ran with the global mode of operation.

Lattice models whose evolution is determined by replacement rules that operate within a neighbor-
hood will often exhibit aggregation of individuals into clusters. This process occurs when an individual
is excluded by a neighbor belonging to a stronger competitor species, the space originally occupied by
the excluded individual will be colonized either by the competitor or by its offspring, a sequence of
such events will produce a cluster of the invading species. In a model where multiple species compete
among each other, the long-term density of each one depends on the number of interactions with other
species and on the probability with which replaces them. Other works that analyse the coexistence
of multiple competing species, use probabilistic rules that depend on the local density of a species to
determine the new state of a cell. In [22] the authors study species diversity using a lattice model where
10 species compete, the probability of colonization of a particular cell by any species is proportional
to the density within the nearest neighbors of a cell, results from computer simulations are of similar
nature to those observed in models that use replacement rules. There is aggregation of species into
clusters, however, dominance of a species depends solely on the spatial distribution of its individuals,
the authors note that despite that in the long-term dominance of a single species should be expected,
it is possible for several species to coexist if some cells are made unsuitable for colonization. Additional
results concerning spatial patterns and their effect on competition can be found in [23] and [24].

Besides competition, another mechanism that favours the formation of patterns in ecological lattice
models is the dispersal of individuals through movement and reproduction [25] [26]. A good approach
to model such phenomenon is to use transition rules that correspond to a diffusion process. In [27]
Comins et al. study a host-parasitoid model on a rectangular grid of patches. Each generation a fraction

3



1.3. LATTICE MODELS IN ECOLOGY

of hosts and parasitoids disperse towards the eight nearest neighboring patches, while the remainder
individuals stay behind to reproduce; interactions between host and parasitoids occur according to the
standard Nicholson-Bailey model of parasitism. The effects of the diffusion on the spatial dynamics of
the model are evident in simulations of the ”epidemic” type: there is a wavefront of hosts, traveling
at constant speed, that invades unoccupied space; this event is followed by a front of parasitoids that
consumes the original wave of hosts. Depending on the fraction of hosts that disperse each generation
several spatial patterns might be observed: low rates of host dispersal lead to spatial chaos, intermediate
rates results in spirals, and low rates of host dispersal combined with high rates of parasitoid dispersal
produce ”crystal” patterns. The authors note that despite the fact that the presence of any of these
patterns leads to the coexistence of both species, there is a threshold for the size of the grid below
which extinction is always observed.

A comparative study of the effects of diffusion processes in spatial models appears in [28], the
authors analyse the behavior of four different spatial prey-predator models (reaction-diffusion equa-
tions, coupled map lattices, cellular automata and integrodifference equations) where prey suffer the
invasion of predators. Simulations of one-dimensional versions of each model show the expected wave
front of predators invading the prey-only state, leaving behind a coexistence state. The authors focus
their attention on the spatial dynamics behind the initial wavefront of predators where three different
phenomena are observed:

Regular spatio-temporal oscillations. For this case, periodic travelling waves moving at a different
speed than the original front are observed, such waves correspond to a family of solutions for
the model based on reaction diffusion equations. A similar behavior is observed for the coupled
map lattice and the integrodifference equations: there are periodic waves behind the invasion
front, however, these move in the opposite direction. A plot in the prey-predator plane for the
coupled map lattice shows that densities move irregularly around a limit cycle. In the cellular
automaton periodic waves are also observed sometimes moving along the invasive front and
sometimes moving in the opposite direction.

Irregular spatio-temporal oscillations. For the reaction diffusion equations, certain parameters
might force the travelling wave solution into irregular oscillations, the authors note that such
pattern might be associated with spatial chaos. The same behavior is observed for the coupled
map lattice and the integrodifference equations, irregularities expand from the focus of the inva-
sion suggesting again that such dynamics are chaotic. No spatial irregularities are observed in
the cellular automaton when biological relevant parameters are used.

Irregular fluctuations. Here, there is a band of periodic waves immediately behind the invasive
front, following this band there are irregular oscillations with no apparent pattern. This behavior
corresponds to a transient due to an unstable periodic wave solution, an analogous behavior is
observed in the coupled map lattice and the integrodifference equations model. This behavior
was not observed in the cellular automaton model.

Similar patterns were obtained in [29] for a probabilistic cellular automaton. By carrying numerical
simulations, the authors were able to obtain the critical exponents for the automaton, thus allowing
the classification of the model into the directed percolation universality class.

Fu et al. [30] showed that for a lattice model where individuals engage in pairwise interactions,
according to the rules of the prisoner’s dilemma or the snowdrift game, it is possible for cooperators
to expand and dominate a population, even tough a ”defection” yields the most benefit. Simulations
using the prisoner’s dilemma rules shows that for a low cost-benefit ratio, cooperators expand into a
single cluster with a few strands of defectors, as individuals incurs in higher cost for lower benefits,
defectors split the cluster of cooperators into smaller fragments, finally there is a critical point beyond
any attempt of invasion by the cooperators fails. When the snowdrift rules are used, low cost-benefit
ratios also lead to a single cluster of cooperators, however, defectors now form isolated ”spots”; as
the cost-benefit ratio increases, the cluster breaks down into filament-like structures containing a few
cooperators.

Diffusion-like transition rules offer a simple and mathematically tractable way to describe the
dispersal of individuals in a lattice model; however, there has been efforts to develop other strategies
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that better mimic phenomena found in natural ecosystems. A lattice model that focuses on the
survival strategies taken by preys and predators appears in [31], the model considers a pursuit and
evasion neighborhood where predators move to catch preys, and preys move to escape from predators,
and a predation neighborhood where predation takes place. The transition rules that govern this model
are as follows:

1. A prey is captured and eaten with probability dh by each predator in its predation neighborhood.

2. A prey produces an offspring with probability bh at an empty neighbouring cell, providing that
there are no predation in its neighborhood.

3. If predation is successful, a predator has probability bp of producing an offspring at the cell
previously occupied by the prey.

4. Independently of any other events, a predator has probability dp of dying.

5. Preys flee from predators, and predators pursue preys. In order to catch a prey, predators move
to one of their eight nearest neighbors following the direction of highest prey-density; similarly,
to escape from predators, preys move in the opposite direction of highest predator density. An
average of mhHN preys are selected to flee from predators, where mh is a positive integer, H is
the density of preys and N is the total number of cells in the lattice, similarly, a fraction mpPN
of predators are selected to pursue preys, where mp is a positive integer and P is the density of
preys.

Simulations of this model show that as they move away from predators, preys form clusters which
are promptly surrounded by predators. For mp = mh = m, there is a critical value m = m0 below
which predators become extinct and preys cover the whole lattice. Above this value, a non trivial fixed
point where preys and predators coexist is obtained. Large values of m produce an inhomogeneous
lattice where several patterns may be observed: there are growing clusters of preys with only a few
predators, collapsing clusters of preys surrounded by predators and regions dominated by predators
that quickly die due to starvation. More interesting is the temporal evolution of the model under these
conditions, there is a long transient with oscillations of big amplitude and some noisy oscillations can
be observed in the long term, however, such behavior is damped as the size of the lattice is increased,
in the limit N →∞ an evolution to a fixed point should be expected. In [32], [33] and [34], the analysis
of the model proposed by Boccara et al. is extended: the study of the evolution of the system in terms
of the birth and death rate of predators reveals an absorbing state and a stationary regime where
both population coexist. Furthermore, it is stated that the oscillatory behavior of the populations
of preys and predators is caused by a dynamic percolation process, i.e., alternating percolation and
non-percolation events.

In [35] the authors analyse the effects that predator pursuit (PP) and prey evasion (PE) have on
the spatial synchrony of a prey-predator model. PP indicates that predators move from locations of
low prey density to those with a higher density of preys, also predators move away from zones with
a high predator density; similarly, PE corresponds to preys moving from zones with a high predator
density to location where predators are scarce, also preys move away from zones with a high prey
density. The resulting spatial dynamics are chaotic and present aggregation of preys and predators,
such behavior indicates that there is no spatial synchrony in the observed patterns. Simulations of the
models without PP and PE show spatial waves which indicates the presence of spatial synchrony.

A model that studies the movement of predators and its role on the persistence of preys and
predators appears in [36]. The authors employ a prey-predator model that includes pursuit and
evasion processes based on a “range of vision”, i.e., when moving, a predator chooses the direction of
highest concentration of preys, on the contrary, preys move in the direction with the lowest number
of predators. Simulations where different ranges of vision are assigned at random to an official to an
initial population predators (such ranges remain fixed and children inherit this trait from their parents)
show that those predators having the highest range of vision are able to survive; on the other hand,
preys having the smallest vision range survive the simulation.

The models presented so far are only an small example of the wide range of spatial patterns that
may be observed in lattice models; however, a question remains: What role do local interactions and
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spatial patterns play in determining the long-term dynamics of an stochastic lattice model? A good
place to start is a series of formal results about a two-state stochastic lattice model known as the basic
contact process. The model describes the life cycle of a plant through the following rules:

1. A plant (a cell in state one) dies (changes its state to zero) with probability γ; otherwise survives
(remains in state one) with probability 1− γ.

2. If a plant at a cell x survives, then there is probability β(x, y) of sending a seed to the cell y.

3. If one or more seeds are sent to a cell y, or if plant at y survives, then y has state one at the
next time step; otherwise the cell will be in state zero.

This model has been the subject of a great number of studies, and many of its properties are now
well understood, for a summary of the most important results about the contact process see [37] and
[38]. The following results are listed due to its relevance to this dissertation:

There exist a critical value of γ called γc, above which the probability that the plant avoids
extinction is zero. This follows from the fact that as the death probability increases, it is more
difficult for the plant to survive.

If the plant does not go extinct, the process converges exponentially fast to the equilibrium.
Moreover when the value of γ is close to γc the rate of convergence is slow.

The most important result about the contact process is the complete convergence theorem [39],
which states that if the plant avoids extinction, then the process will converge to an stationary
distribution which is the limit when the process starts with a configuration where all cells are
in state one. In words, the theorem says that for an arbitrary initial configuration, if the plant
survives for a long enough time, then in the limit it looks like as if the process has started from
a configuration where all cells are in state one. An interesting consequence of the theorem is
that the only stationary distributions for the model are: a) the limit starting from the all ones
configuration, b) the trivial stationary distribution of the all zeroes configuration and c) a linear
combination of both. The complete convergence theorem provides a complete landscape of the
outcome of the interactions in the basic contact process; for some prey-predators models, besides
the trivial all zeroes configuration that represents extinction, and a configuration where species
coexist, it is also possible to obtain another stationary distribution where the lattice is completely
covered by preys.

In order to analyse the behavior of a lattice model, it is common to construct a set of equations
that describe the change in density of all states in the model; such set is obtained by considering
that there is no correlation between the states of the cells of the lattice. It is well known that
such equations constitutes only a poor representation of the behavior of a lattice model; however
if the dispersal range r is large, then the states of the cells are almost independent and the
equations become more accurate. In general the prediction made by the mean field equations
becomes exact in the limit r →∞. In [38] Durret and Levin show such behavior for the density of
empty cells observed in the lattice model, and the mean field equations that describe the change
in density of such cells.

In a related work (see [40]), Durret and Levin analyse the evolutionary game known as “hawks and
doves”, the interaction between these two species are described by the following game matrix:

H D

H a b
D c d

Table 1.1: Game matrix for the “hawks and doves” game.

where:
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H denotes a hawk.

D represents a dove.

a, b, c and d are the interactions payoffs, e.g., a is the payoff to a haws when interaction with
other haws, such quantity represents the density dependent growth rate of hawks.

The authors propose that the behavior of an stochastic spatial model could be determined from
the properties of the corresponding “mean field” equations, i.e., the equations for the densitites of
states which results from pretending that the states of adjacent cells are independent. The following
classification is given:

Case I. If there is a globally atracting fixed point then there is a unique equilibrium that is the
limit starting from any initial state in which both species have positive density.

Case II. There exist two locally attracting fixed points in the equations, their long-term behavior
depends on the initial conditions; meanwhile, for the corresponding spatial model, the stronger
species always covers the entire lattice.

Case III. Periodic orbits in the mean field equations. The long-term behavior of the corresponding
lattice model depends on the scale of the lattice. At small scales, random oscillations of the
densities of both populations can be observed; for medium length scales, the oscillations become
smoother; finally for large scales, there is an oscillatory transient after which densities become
almost constant.

Case I is observed in models where the fitness of one type of individual is enhanced by the presence of
individuals of another kind, examples of such interactions can be found in [41] [42]. Case II correponds
to a classic competition scenario, if a strong competitor establishes itself in some region of the lattice,
it will keep growing until the lattice is completely covered (see [22] [23] [43]).

Case III corresponds to oscillatory behavior, one of the most interessting phenomena that can
be observed both in natural and theoretical prey-predator systems. The report on the number of
pelts of the Canadian lynx and the snowshoe hare sold by the Hudson Bay-Company between 1835
and 1904 is one the most well known data sets in ecology, and is perhaps the best example of the
consequences of prey-predator interactions. A plot of this data set shows oscillations that can be
intuitively understood as follows: an increase of the population of lynxes causes an increase of the
number of hares eaten, such reduction in the amount of food available for the lynxes provokes a
new decrease of their population, which in turn allows a new increase in the number of hares. The
mathematical study of such interactions goes back to the decade of 1920 with the work of Alfred Lotka,
who proposed a model to explain oscillations observed in the number of fishes caught in the Adriatic
sea, and the work of Vito Volterra who obtained a similar model using reacting chemical components
that also showed oscillatory behavior.

A model that studies the grazing patterns of the snowshoe hare population and their relationship
with the oscillatory behavior of the population appears in [44]. The model employs the following rules
to mimic the life cycle of the hares:

1. Motion. Hares are able to move to a neighboring cell at each time step, however, there is a
greater probability of motion in the direction where the density of vegetation is higher.

2. Vegetation growth. Vegetation grows at rate V I on every patch until a maximum density MV
is reached

3. Nourishment. Hares eat the vegetation at their cell and transform a fraction of the ingested food
into biomass of their own population, according to a given efficiency.

4. Breeding. In order to reproduce, one male and one female must be present at the same cell,
additionally hares can’t reproduce until sexual maturity has been reached. When breeding they
produce between two and eight new individuals, each new individual is placed randomly at one
of the nearest neighbors if such neighbor is empty, otherwise, the offspring dies.
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5. Death. Hares can die in one of four ways: they can die immediately after birth if no empty
neighbors is available for dispersal. There is a global death rate independent of any other event.
An individual may die of malnutrition if it has not eaten a minimum amount of vegetation after
a given number of time steps. Finally an individual dies of old age after reaching the maximum
allowed age for its species.

Each rule takes into account several parameters that reflect the biological information available
about the ecosystem, e.g., the vegetation increase rate, breeding period of the hares, number of off-
spring, etc. Simulations of the model, using lattices with sizes ranging from 30 × 30 cells to 90 ×
90 cells, show a limit cycle with a period of 9 to 11 years, which correspond to the period observed
in the Hudson Bay data set. If a global motion rule is used, i.e., if hares are allowed to move to any
cell of the lattice, the limit cycle disappears. The spatial dynamics of the model show target patterns
and spirals that are responsible for the cyclic behavior observed: when a pattern is expanding, the
density of hares increases accordingly, the time required until a peak is reached introduces temporal
lags which produce the cyclic behavior. More important that the cyclic behavior per se is the fact
that the local cycles of different regions of the lattice are synchronized, i.e., if measures of the density
of hares are taken in proper subsets of the lattice, it is found that the cycles observed in these subsets
are approximately in phase, again such results agree with data collected in natural populations.

Models studying more complex food chains also report the presence of regular oscillations, Blasius
et al. [45] proposed a model to study the population dynamics of the Canadian lynx and the snowshoe
hare. The model consist of a system of differential equations that represent a three-level food chain
with predators feeding on herbivores, and herbivores consuming vegetation. Besides showing a typical
limit-cycle behavior, this food chain model shows that the populations of preys and predators oscillate
with an almost constant frequency. However, the amplitude at each peak of the time series is highly
unpredictable, both of these features are present in the hare-lynx population data. When simulated in
a regular array of patches linked by migration, all patches became synchronized to the same frequency.
Nevertheless, the amplitudes of the populations observed in each individual patch were only weakly
correlated. On the contrary when diffusion was eliminated, the population of each patch behave
independently with no phase synchronization.

1.4. Organization of this thesis

This document is organized as follows: in Chapter 2 we start with a brief analysis of the logistic
equation, this will serve to familiarize the reader with some basic terms. Furthermore, the logistic
equation will serve to present an example of a dynamical system, used to model an ecological phe-
nomenon, with a wide range of dynamics. Also, it will serve to introduce the basic tools of analysis
that will later be used to describe the long term behavior of a cellular automaton. Next, the formal
definition of cellular automaton is given, followed by the analysis of the spatial and temporal dynamics
of elementary cellular automata. The rest of the chapter is devoted to present the theory behind
Particle Swarm Optimization a tool borrowed from the field of evolutionary computing that will serve
to improve the proposed model.

Chapter 3 presents some methodologies used to study the long-term dynamics of lattice models.
For completeness, we also present previous works where such methodologies have been successfully
applied.

Chapter 4 describes in detail the proposed model. We put special emphasis in explaining the use
of Particle Swarm Optimization to model the movement of predators in the lattice.

Our experiments and results are presented in Chapter 5. We perform a qualitative analysis of the
spatial dynamics of the model, aimed to describe the relationship between the local interactions of
individuals and the long term dynamics of the model.

In Chapter 6 we perform a mean-field analysis of the proposed model. Besides showing that for
large neighborhoods the dynamics of the mean-field equations and the dynamics of the proposed model
are closely related, we show that the functional form of quantities such as the death probabilities of
preys and predators remain unchanged for a varying neighborhood size.

Finally the conclusions are given in Chapter 7

8



1.5. PUBLICATIONS

1.5. Publications

Mario Mart́ınez Molina, Marco A. Moreno Armendáriz, Nareli Cruz Cortés and Juan Carlos Seck
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Chapter 2

Background

2.1. Non Linear Dynamics in Ecosystems

The increase in size of a population, where reproduction occurs within an specific time frame, i.e.,
the population increases in discrete time steps, can be described through the next first-order non-linear
difference equation:

Nt+1 = f(Nt) (2.1)

where Nt is the size of the population at time t. In an ecological context, f must satisfy the
following properties [46]:

1. f(0) = 0

2. f(Nt) increases monotonically to the value K, which represents the carrying capacity of the
ecosystem.

3. If f(Nt) > K ⇒ f(Nt)→ −∞

A well known equation that fulfills these requirements is the logistic map:

Nt+1 = Nt (a− bNt) (2.2)

where:

b determines the level of intraspecific competence that is present in the population, when b = 0,
there is no competence, and Nt grows exponentially.

a is the net reproduction rate of the population.

Figure 2.1a shows a plot of the logistic map with a = 2 and b = 0.5, here it is possible to observe
an evolution towards a simple fixed point. As the value of a increases, it is possible to observe a wide
range of dynamics: for a = 3.5, a limit cycle with period two is observed (see Figure 2.1b). The period
of this limit cycle is doubled for a = 3.55 (see Figure 2.1c). If the value of a keeps increasing, the limit
cycles disappear, and the population oscillates in an seemingly unpredictable manner. However, each
Nt+1 in this “random” sequence is related to the population size at time t, thus a plot of Nt+1 vs Nt
(see Figure 2.1d) reveals a well defined relationship between Nt and Nt+1. Due to the quadratic term
in Equation 2.2, such relationship takes the form of a parabola.

By calculating the orbit, and obtaining the fixed points of a dynamical system such as Equation
2.2, it is possible to describe the dynamics that govern its behavior [47, 46]. The fixed points of the
logistic map can be obtained by noting that if Nt = K, then Nt+1 = Nt, and Equation 2.2 can be
rewritten as follows:
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Figure 2.1: Evolution of the logistic map for an increasing reproduction rate.

Nt = Nt (a− bNt) (2.3)

By solving Equation 2.3 the next fixed points are obtained:

N∗1 = 0

N∗2 =
a− 1

b

N∗1 is a trivial fixed point, since any population devoid of individuals, will remain in that way for
all time steps. If a = 2 and b = 0.5, then Nt = 2, which is consistent with Figure 2.1a. The fixed
point N∗2 will be locally stable if and only if |f ′(N∗)| < 1, since f ′(N∗2 ) = 2 − a, this fixed point will
be locally stable in the interval 1 < a < 3. Moreover, when a ≥ 1, f(Nt) does not have the desired
properties of a model that describes the increase in size of a population.

When a = 3, f ′(N∗2 ) = −1, the graph of f(Nt) is perpendicular to the line with slope 1 at the point
where Nt+1 = Nt. For a > 3, N∗2 becomes unstable (|f ′(N∗)| > 1), forming a limit cycle of period
2, the fixed points of this limit cycle can be found by solving f2(Nt) = Nt, where f2(Nt) denotes
f (f(Nt)), thus we may proceed as follows:

f2(Nt) = Nt

[Nt(a− bNt)] [a− b (Nt(a− bNt))] = Nt

Expanding the factors:
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(a2 − 1)Nt +
(
−a2b− ab

)
N2
t + 2ab2N3

t − b3N4
t = 0 (2.4)

Since f2(N∗1 ) = N∗1 and f2(N∗2 ) = N∗2 , these are two solutions to Equation 2.4, thus it is possible
to divide such equation by the factor (Nt −N∗1 )(Nt −N∗2 ) to obtain:

b2N2
t − b(a+ 1)Nt + a+ 1 (2.5)

The roots of this polynomial define the cycles of period two for the logistic map:

q1 =
a+ 1 +

√
a2 − 2a− 3

2b
(2.6)

q2 =
a+ 1−

√
a2 − 2a− 3

2b
(2.7)

Note that the limit cycle exists only in the interval [−∞,−1]∪ [3,∞], furthermore the existence of
the cycle depends on the level of competence present in the population (b 6= 0). Of course, the values
of a lesser than −1 are not of interest for our analysis. When a = 3.5 and b = 0.5, the points that
define the limit cycle are: q1 = 3 and q2 = 6, such result is consistent with Figure 2.1b.

Figure 2.2 shows the plot of f2(Nt) before and after the bifurcation, the fixed and periodic points
may be found by locating the intersection of f2(Nt) with the identity function. If a < 3, then N∗2 is an
attracting fixed point. For all a ≥ 3, N∗2 becomes a repelling fixed point, the graph of f2(Nt) twists
around this fixed point to produce a limit cycle with period two, having periodic points q1 and q2.
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Figure 2.2: Period-doubling bifurcation.
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Each point in the limit cycle might experience a new bifurcation, thus a limit cycle with period
two becomes a limit cycle with period four. This behavior is illustrated by the bifurcation diagram of
the logistic map (see Figure 2.3), this diagram captures the asymptotic behavior of Equation 2.2. As
the values of a increases. Note that in the interval 1 < a < 3 there is only a single fixed point for each
a; for a > 3, such fixed point bifurcates into a limit cycle of period two, this cycle then bifurcates into
a limit cycle of period four. This sequence of bifurcations continues as the value of a keeps increasing,
eventually a point is reached where the orbit is not attracted to any kind of limit cycle. This period
doubling phenomenon is one of the best known routes to chaos [46].
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Figure 2.3: Bifurcation diagram for the logistic equation.

2.2. Cellular Automata

CA are dynamical systems discrete in time and space. They are adequate to model systems that
can be described in terms of a massive collection of objects known as cells, which interact locally and
synchronously. A cellular automaton is totally defined by the tuple A = (d,Q,N, f), where:

d ∈ Z+, is the dimension of the lattice L ⊆ Zd.

Q is a finite set of states.

N is a d-dimensional neighborhood vector:

N = ( ~n1, ~n2, . . . , ~nm) (2.8)

where each ~ni ∈ Zd and ~ni 6= ~nj . Each ~ni specifies the relative locations of the neighbors of each
cell [48], in particular, cell ~n has coordinates (0, 0, . . . , 0) and neighbors ~n+~ni for i = 1, 2, . . . ,m.
In a two dimensional cellular automaton the Moore neighborhood is often used, it comprises
the cell to evolve and its 8 nearest neighbors. It can be generalized as the d-dimensional Md

r

neighborhood [48] defined as:
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Md
r =

{
ni ∈ Zd | ni = (ni1 , . . . , nid) , nij ≤ r

}
(2.9)

f : Qm → Q is a local transition function that specifies the new state of a cell, taking into
account the states of its neighbors.

A configuration of a d-dimensional cellular automaton is a function:

c : Zd → Q (2.10)

that assigns a state to each cell. The state of cell ~n ∈ Zd at time t is given by ct (~n), the set of all

configurations is QZd

. The local transition function provokes a global change in the configuration of
the automata. Configuration c is changed into configuration c′, where for all ~n ∈ Zd:

c′ (~n) = f [c(~n+ ~n1), c(~n+ ~n2), . . . , c(~n+ ~nm)] (2.11)

The transformation c 7→ c′ is the global transition function of the cellular automaton, defined as:

G : QZd → QZd

(2.12)

The evolution in time of the cellular automaton is given by a sequence of iterations of function G,
this sequence represents the orbit of a dynamical system starting from a initial configuration c:

orb(c) = c,G(c), G2(c), . . . , Gt(c)

A configuration c is:

A fixed point of G, if G(c) = c.

Periodic, if Gt(c) = c, for some t ∈ Z.

Eventually fixed, if there is n ∈ N such that Gn+1(c) = Gn(c), i.e., Gn(c) is a fixed point for
some n.

Eventually periodic if there is n ∈ N and t ∈ Z+, such that Gn+t(c) = Gn(c), i.e., Gn(c) is
periodic for some n.

2.2.1. Elementary cellular automata

This class of one-dimensional cellular automata were first studied by Wolfram [49], they can be
defined by the tuple (d,Q,N, f) as follows:

d = 1

Q = {0, 1}

N = {(−1), (0), (1)}

f : Q3 → Q

Since |Q| = 2 and |N | = 3, there are 8 different configurations for a neighborhood, by assigning an
element of Q to each configuration we construct a transition table for the cellular automaton, the last
column of such table can be regarded as a binary digit, that when converted to decimal notation can
be used to identify a CA rule. Table 2.1 shows the transition table for the rule 169, Figure 2.4 shows
the corresponding evolution.
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c(~n− 1) c(~n) c(~n+ 1) c(~n)

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Table 2.1: Transition table for rule 169. Figure 2.4: Evolution of rule 169.

2.2.2. Spatial dynamics of elementary cellular automata

In order to make easier the analysis of a cellular automaton, it is common to consider periodic
boundaries, for one-dimensional automata, this means that the cells at the border of the lattice are
connected, thus the lattice takes the form of a ring. The evolution of such rings depends greatly on
their length, e.g., rings of length one, where a cell is its own left and right neighbor may evolve as
follows:

If the state of the ring is quiescent, then the configuration is a fixed point. For rule 169, “1” is
a quiescent state since f(1, 1, 1) = 1, so the evolution of the ring is:

1 7→ 1

The configuration is eventually fixed. The ring evolves towards a quiescent state, from which it
cannot scape. A ring with the state “0”, evolving according to rule 169, fulfills these conditions.

0 7→ 1 7→ 1

Periodic evolution: a state “0” evolves into state “1”, which evolves again into “0”. Rule 1 is a
good example of this phenomenon:

0 7→ 1 7→ 0

As the length of the ring increases, its evolution may lead to configuration with longer periods, or
multiple fixed points. Table 2.2 lists all of the 32 possible configurations for a ring of length 5. Several
of such configurations show cyclic symmetry, e.g., 00001→ 01100 and 00010→ 11000. Table 2.3 shows
these configurations in decimal notation, using this information it is possible to construct a diagram
that shows the sequence of transitions for the ring (see Figure 2.5), the result of this construction is
a collection of “trees rooted on cycles”, where each group of configurations belonging to a particular
cycle represents a different symmetry class.

From Figure 2.5 we can conclude:

Configuration 31 is a fixed point.

Configuration 0 is eventually fixed since it evolves into configuration 31

There are two cycles of period 5, the first is formed by configurations 26, 21, 11, 22 and 13, the
second is formed by configurations 27, 23, 15, 30 and 29

There is one cycle of period 15, formed by configurations 1, 12, 9, 16, 6, 20, 8, 2, 10, 4, 17, 5, 2,
24 and 18

15



2.2. CELLULAR AUTOMATA

c G(c) c G(c)

00000 11111 10000 00110
00001 01100 10001 00101
00010 11000 10010 00001
00011 01010 10011 00011
00100 10001 10100 01000
00101 00010 10101 01011
00110 10100 10110 01101
00111 00110 10111 01111
01000 00011 11000 10010
01001 10000 11001 10001
01010 00100 11010 10101
01011 10110 11011 10111
01100 01001 11100 11000
01101 11010 11101 11011
01110 01100 11110 11101
01111 11110 11111 11111

Table 2.2: Configurations for a ring of
length 5.

c G(c) c G(c)

0 31 16 6
1 12 17 5
2 24 18 1
3 10 19 3
4 17 20 8
5 2 21 11
6 20 22 13
7 6 23 15
8 3 24 18
9 16 25 17
10 4 26 21
11 22 27 23
12 9 28 24
13 26 29 27
14 12 30 29
15 30 31 31

Table 2.3: Configurations in
decimal notation.
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Figure 2.5: Symmetry classes for a ring of length 5.

Configurations 19, 25, 28, 14 and 7 are eventually periodic, since they evolve into the cycle of
period 15

De Bruijn diagrams were originally used to analyse sequences of symbols from an alphabet in the
context of shift dynamical systems, thus they provide an excellent tool to describe the evolution of a
cellular automaton (for a detailed analysis see [50]). In the one-dimensional case, a De Bruijn diagram
is a directed graph with k2r nodes and k2r+1 edges, with r = (|N | − 1)/2. Each node is a sequence of
2r symbols from the set of states Q, two nodes are connected if the last 2r−1 symbols from the initial
node are the same that the first 2r − 1 symbols of the final node. Each edge of the graph represents
a complete neighborhood of the CA, thus edges describe the way in which neighborhoods overlap.
Sometimes the edge is labeled using this neighborhood, in some other cases it is labeled using the
state at which the neighborhood evolves. Figure 2.6a shows the de Bruijn diagram for rule 169. Paths
in the diagram might represent configurations or classes of configurations related to the evolution of
the automata. If some criteria exists to eliminate certain edges, the resulting sub-diagram consists of
those neighborhoods that match the elimination criteria. If we eliminate those edges that represent
neighborhoods where the transition does not change the state of a cell, the resulting diagram (see
Figure 2.6b) defines sequences which are invariant to the evolution of the automaton, the so called
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2.2. CELLULAR AUTOMATA

“still lifes”. There are two still lifes for rule 169, the first represented by strings in 1∗ (the operator *
represents the Kleene star), and the second by strings in 00(1∗).

00

1110

01

1

1

1
1

0

0

0
0

(a) Simple version.

00

1110

01

1

1

0

0

(b) Diagram for the “still lifes”.

Figure 2.6: De Bruijn diagrams for rule 169.

It is possible to describe periodic configurations through a de Bruijn diagram, e.g., it is possible to
describe configuration that moves faster than r each generation, such configuration are called “super-
luminal”. Let us consider (for rule 169) a shift of two cells to the right each generation, to determine
the configurations that match this criteria follow the next procedure:

1. Start with a neighborhood of three cells denoted by abc (see Figure 2.7)

2. Let x be the cell whose state is determined by abc, since x is the result of a shift of two cells to
the right, there is a cell to the left of a that also has state of x.

3. Let y be the cell whose state is determined by the neighborhood bcd, however, due to the shift,
the state of this cell is that of cell a. Up to this point, the state of cell d is unknown.

4. To determine the state of cell d, it is necessary to use the transition table of rule 169, the partial
neighborhood bc, and the state of cell y give enough information to calculate the state of cell d.
According to Table 2.1 there is only one possible state that fulfills the conditions described thus
far, tough this is not necessarily true for other rules.

5. Once the state of cell d has been obtained, we can express the neighborhood xabcd as the overlap
of two partial neighborhoods: xabc and abcd, each one of these represents a node in a de Bruijn
diagram, since the starting neighborhood abc can be chosen in 8 different ways (since |Q| = 2,
the resulting de Bruijn diagram will have 8 nodes.

Figure 2.7: A shift of two cells to the right in one generation.
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2.3. MEAN FIELD THEORY FOR ELEMENTARY CELLULAR AUTOMATA

Figure 2.8a shows the de Bruijn graph for the previously described shift, in such diagram the nodes
have been colored according to the state of the rightmost cell in the partial neighborhood represented
by a node. A path in the graph represents a configuration with the desired shift, from the analysis of
the diagram we can conclude:

Configuration 1∗ represents a trivial shift, since any group of only ones can only evolve in another
group of ones.

There is a cycle of length 3, represented by configuration (110)∗, the evolution of such configu-
ration is shown in Figure 2.8b

There is a cycle of length 4 corresponding to configuration (1000)∗, the evolution of this config-
uration is show in Figure 2.8c

zero

one

(a) De Bruijn diagram.

(b) (110)∗ (c) (1000)∗

Figure 2.8: A shift of two cells to the right in one generation according to rule 169.

A similar procedure can be used to obtain longer shifts with bigger periods. Figure 2.9 shows the
de Bruijn diagram for a shift of three cells in two generations, the results given by the analysis of the
graph are as follows:

There exists a cycle of length 5 represented by (01011)∗ (see Figure 2.9b).

A second cycle of length 5 includes configurations of the form: (11110)∗, Figure 2.9c shows the
evolution of this configuration.

Configurations in (010011100100011000001)∗ form a cycle of length 21, the corresponding evolu-
tion is shown in Figure 2.9d

2.3. Mean field theory for elementary cellular automata

Another interesting question regarding the long term behavior of a cellular automaton concerns
the evolution of the density of a certain state q ∈ Q, i.e., is it possible to predict the number of cells
having state q as the evolution of the automaton proceeds?
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zero

one

(a) De Bruijn diagram.

(b) (01011)∗ (c) (11110)∗ (d) (010011100100011000001)∗

Figure 2.9: Shifts of three cells in two generations for rule 169.

A simple approach would be to count the number of configurations that evolve into q. Consider
once again the transition function for rule 169 (see Table 2.1), if we wish to calculate the probability
of having a cell with state one, we see that there are four neighborhoods that produce this state, since
there are 8 possible configurations, the probability of having this state would be 1/2, of course there
are no reasons to make each configuration equally likely, so a more reasonable approach would be to
assign different probabilities to each state in Q, and then calculate the probability of each configuration
of the neighborhood.

The mean field theory arises from the assumption that the probabilities for each one of the cells in
a neighborhood are independent, since the neighborhoods overlap, this assumption is of course wrong,
however, it represents a good compromise between the ease of analysis and accuracy [51]. Let p denote
the probability of a cell having state one, and 1 − p the probability of state zero, since we assume
independence, we can calculate the probability of a particular configuration through the product of
individual probabilities, e.g.:

P (010) = (1− p)(p)(1− p) = p(1− p)2

If w = (c(~n+ ~n1), . . . , c(~n+ ~nm)) ∈ Qm is a configuration of the neighbors of cell ~n, then

Wq = {w : f(w) = q} (2.13)

is the set of all configurations that evolve into state q. According to this we can compute the
probability of a cell having state q at time t+ 1 as follows:

P (ct+1(~n) = q) =
∑
Wq

P (w) (2.14)

19



2.3. MEAN FIELD THEORY FOR ELEMENTARY CELLULAR AUTOMATA

To clarify this, consider the probability of having a one in t+1 in a cellular automaton that evolves
according to rule 169, such probability is given by:

P (ct+1(~n) = 1) = P (000) + P (011) + P (101) + P (111)

P (ct+1(~n) = 1) = (1− p)3 + p2(1− p) + p2(1− p) + p3

P (ct+1(~n) = 1) = −2p3 + 5p2 − 3p+ 1 (2.15)

Just as we did with the logistic equation, we may obtain the fixed points for the density equation
by solving:

p = −2p3 + 5p2 − 3p+ 1 (2.16)

The fixed points are p∗1 = 0.5 and p∗2 = 1. The derivative at p∗1 is 0.5, so this is an attracting fixed
point. The derivate at p2 is 1.0, i.e., a neutral fixed point. To further analyze this results we may plot
the orbit of Equation 2.15 by means of a cobweb diagram. Figure 2.10a shows an orbit starting from
a density of 0.01, the plot shows that p∗2 repels this orbit during the first iterations to finally decay
into p1, thus we can expect a long transient until the orbit stabilizes. A similar plot starting from a
density of 0.8 is shown in Figure 2.10b, here it is possible to observe a rapid decay into p∗1.

0.0 0.2 0.4 0.6 0.8 1.0
Density at t

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

at
t+

1

(a) Initial density = 0.01
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(b) Initial density = 0.8

Figure 2.10: Mean field theory predictions.

A simulation of the automaton (Figure 2.11a) with an initial density of 0.01 confirms the transient
predicted by figure 2.10a, however, instead of stabilizing, the number of cells with state one oscillates
around the predicted density of 0.5 (the plots shown correspond to a ring of length 100). The corre-
sponding simulation for an initial density of 0.8 is shown in Figure 2.11b the results show a similar
behavior as the one predicted by figure 2.10b, i.e, a rapid decay away from p∗2 followed by an oscillation
around p∗1.There is then a deviation from the results obtained by the mean field theory from the results
given by a direct simulation of the automata. The reason behind this difference comes from the initial
assumption of independence, and from the fact that the mean field theory does not take into account
the spatial structure of the neighborhoods of a cell, e.g., configurations 011 and 101 have the same
probability: p2(1− p). An approach that explicitly consider the overlap of cells appears in [52], here,
the authors consider an arrangement of cells known as block, the length of this block is chosen in such
a way that no overlap among blocks exists, and probabilities can be considered truly independent.
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Figure 2.11: Experimental results for rule 169.

2.4. Probabilistic Cellular Automata (PCA)

This kind of automata represent a generalization of those described in section 2.2, instead of being
updated deterministically, the image of the local transition function for any neighborhood is given by
the distribution of a discrete random variable with values in Q [53].

As an example consider the one-dimensional totalistic PCA described in [54], this automata is an
extension of the Domany-Kinzel cellular automaton [9]. The local transition function of the automaton
is given in Table 2.4

where s is given by:

s =

1∑
i=−1

ct(~n+ i)

and the quantities ps are the conditional probabilities that ct+1(~n) = 1, given that the sum of
states over the neighborhood is s.

A good starting point to analyse this automaton is to set p0 = 0 (to prevent spontaneous genera-
tion), and p3 = 1, under this conditions, there are two quiescent states, the first corresponding to the
configuration (0, . . . , 0), and the second corresponding to the configuration (1, . . . , 1). If ρ denotes the
density of cells having state one at times t, then
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2.5. PARTICLE SWARM OPTIMIZATION

ct(~n− 1) ct(~n− 1) ct(~n− 1) s ct+1(~n) = 0 ct+1(~n) = 1

0 0 0 0 1− p0 p0

0 0 1 1 1− p1 p1

0 1 0 1 1− p1 p1

0 1 1 2 1− p2 p2

1 0 0 1 1− p1 p1

1 0 1 2 1− p2 p2

1 1 0 2 1− p2 p2

1 1 1 3 1− p3 p3

Table 2.4: Transition table for the probabilistic cellular automaton.

P (ct+1(~n) = 1) = 3p1ρ(1− ρ)2 + 3p2ρ
2(1− ρ) + ρ3 (2.17)

is the mean-field equation for the density of cells having state one. Equation 2.17 has three fixed
points:

ρ∗0 = 0 (2.18)

ρ∗1 =
3p1 − 1

3p1 − 3p2 + 1
(2.19)

ρ∗2 = 1 (2.20)

The stability of these fixed points is as follows:

The fixed point ρ∗0 is stable for 0 ≤ p1 < 1/3

If 1/3 < p1 ≤ 1 and 0 ≤ p2 < 2/3 then ρ∗1 is stable.

ρ∗2 is stable if 2/3 < p∗2 ≤ 1

At the boundary p1 = 1/3, 0 ≤ p2 < 2/3 there is a transition from the quiescent state given by the
configuration (0, . . . , 0) to configurations where the density of cells having state one is not zero (active
state). Another transition from the active state to the quiescent state given by the configuration
(1, . . . , 1) occurs at the boundary 1/3 < p1 ≤ 1, p2 = 2/3.

2.5. Particle Swarm Optimization

PSO is a bio-inspired algorithm based on the collective behavior of several groups of animals (flocks,
fish schools, insect swarms, etc.) [55]. Its main objective is the searching of an optimum in a search
space that defines the set of possible solutions to a particular problem. Each point in the search space
represents an specific set of features that qualify that position, it is possible then to assign a numerical
value to each candidate solution through a measure imposed on the search space, such value is called
fitness.

To clarify these concepts, consider the problem of finding the absolute minimum of the following
function:

f(x) =
1

2
+

sin2(x2)− 1
2

(1 + 0.001x2)
2 (2.21)

A plot of the function is shown in Figure 2.12, commonly a function such as f(x) is called objective
function. It is easy to observe that the minimum value of f(x) occurs at the point x = 0, this is the
solution we are looking for. However, the shape of the plot shows several points where the value of
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Figure 2.12: A plot of the function defined in Equation 2.21.

f(x) is close to the absolute minimum. This feature of the function defined in Equation 2.21 makes it
ideal to study the behavior of the PSO algorithm.

The domain of variable x, i.e., the set R of real numbers, represents the search space of the
minimization problem. For this problem, it is possible to use Equation 2.21 directly as a fitness
function, then the solution of the problem is given by the element of the search space with the minimum
fitness value.

PSO considers an initial population of particles (the swarm) randomly distributed through the
search space. Figure 2.12 shows these particles as dots on the graph of f(x). In order to find an
optimal solution, particles move in discrete time steps, using the information they have acquired
individually and the information received from the swarm. The movement of a particle is described
in terms of its position and velocity. Furthermore, each particle is able to record the best position it
has visited so far, for a minimization problem, if the particle moves to a position with a lower fitness
value than that of its current best known position, then such position is updated.

The position Xt
i of each particle is updated in discrete time steps according to the next equations:

V t+1
i = ωV ti + k1q1

(
P ti −Xt

i

)
+ k2q2

(
P tg −Xt

i

)
(2.22)

Xt+1
i = Xt

i + V t+1
i (2.23)

where:

V ti is the velocity vector at time t of particle i.

k1 and k2 are the cognitive and social factor respectively.

q1 ∈ [0, 1] and q2 ∈ [0, 1] are uniformly chosen random numbers.

P ti denotes the position with the highest fitness value found by particle i until time t, i.e., the
best position found by particle i.

P tg denotes the position with the highest fitness value found by the swarm at time t. If a local
PSO is used, P tg is replaced by P tli , this term denotes the position with the highest fitness value
found by the neighbors of particle i at time t.

ω is the inertia weight, this term serves as a mechanism to favor the exploration of the search
space, or the exploitation of known good solutions.
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2.5. PARTICLE SWARM OPTIMIZATION

Each term of Equation 2.22 plays a different role in the PSO algorithm:

The ωV ti term is responsible for keeping the current direction of movement of the particle, is
commonly known as the inertia component. The parameter ω is known as inertia weight, higher
values of ω speed up the current direction of movement with produces long range movements of
the particle, lower values “decelerate” the particle, which produces small sized movements. In
order to take advantage of this behavior, the value of ω is linearly decreased as the execution
of the algorithm advances. Thus, during the first iterations of the algorithm, the long range
movements of the particle favour the exploration of the search space. At the final iterations,
the movements of a particle are more constrained, which encourages the search in zones with a
known good fitness values, this phenomenon is called exploitation.

The term k1q1 (P ti −Xt
i ) is known as the cognitive component, and serves to guide the movement

of the particle towards zones where the particle has previously found good fitness values. The
parameter k1 and the coefficient q1 determine the magnitude of the contribution of this term to
the new velocity vector of the particle.

The term k2q2

(
P tg −Xt

i

)
is known as the social component, its purpose is to direct the movement

of the particle towards the best zone found by the swarm. The parameter k2 and the coefficient
q2 determine the contribution of this term to the new velocity vector of the particle.

A typical global PSO algorithm proceeds as follows:

1. Initialize the position of each particle with a uniformly distributed random vector.

2. Set the best known position of each particle to its initial position.

3. Initialize the velocity of each particle with a uniformly distributed random vector.

4. Determine the swarm’s best known position.

5. Update the velocity of each particle according to Equation 2.22.

6. Using Equation 2.23 calculate the new position of each particle.

7. If necessary, update the best known position of each particle.

8. If a particle founds a position with a better fitness value than that of the swarm’s best known
position, update such position.

9. If the stop condition is met (a good enough solution has been found, a certain number of iterations
has been performed, etc.), then the algorithm stops and P tg contains the solution found by the
algorithm. Otherwise return to step 5.

Consider again the swarm depicted in Figure 2.12, Table 2.5 summarizes the status of each particle
after the initialization process.

Particle Position Velocity Fitness
P0 1.9894 -2.7016 0.5304
P1 0.6523 -2.0154 0.1706
P2 -2.476 0.5104 0.0289
P3 -1.551 3.0651 0.4509
P4 0.8395 -2.2173 0.4198

Table 2.5: Status of the swarm after initialization.

From the table it is clear that after initialization, P tg corresponds to the position of P2, i.e., the
point x = −2.476, note that even if the fitness value of P2 is close to zero, the position of this particle
is still far from the position that corresponds to the absolute minimum of f(x).
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For k1 = k2 = 2, q1 = 0.8598, q2 = 0.056 and a ω = 0.9, the velocity and position of P0 are updated
as follows:

V 1
0 = ωV 0

0 + k1q1

(
P 0

0 −X0
0

)
+ k2q2

(
P 0
g −X0

0

)
V 1

0 = (0.9)(−2.7016) + (2)(0.8598)(1.9894− 1.9894) +

(2)(0.056)(−2.476− 1.9894)

V 1
0 =− 2.9316

X1
0 =X0

0 + V 1
0 = 1.9894 + (−2.9316) = −0.9422

The position of the remainging particles is calculated in a similar way. Of course, the best position
found by each particle and the best position found by the swarm must be updated as needed. Figures
2.13a and 2.13b shows the change in position of each particle during the first 40 iterations of the
algorithm, for this example the value of ω was decreased linearly from a starting value of 0.9 to a final
value of 0.4, such range was proposed by Eberhart and Shi in [56]. It is clear that particles P1, P3 and
P4 quicly converge towards a good solution. on the other hand, particles P0 and P2 stil oscillate far
away from the solution, this behavior is expected given the small number of iterations reported in the
figures. After 100 iterations, the best position found by the algorithm was x = −2.48235× 10−6 with
a corresponding fitness value of 6.21725 × 10−15, the result is remarkable given the small number of
particles used for the example.

Typically, a particle uses one of two schemes to obtain information from other individuals [57]:
in the first all particles are connected to each other, and every particle is under the influence of the
particle in the position with the best fitness value among all particles of the swarm, this is the global
PSO. In the second scheme called, a neighborhood comprising a particle of the swarm and its m nearest
neighbors is created; each particle is then influenced by the performance of these local neighbors, this
approach defines the local PSO.
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Figure 2.13: Change in position of the particles depicted in Figure 2.12.
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Chapter 3

State of the art

Lattice models based on cellular automata, are abundant in ecological modelling due to their
capacity to describe with great detail the local interactions among the organisms that compose an
ecosystem. The analysis of such interactions has provided new insights on the underlying processes
that determine the global behavior of such systems: e.g., the self-organized criticality in an hierarchical
food chain [58], the long term maintenance of species diversity [22], or the effects of the interspecific
competence at local scale on the coexistence and diversity of multiple competing species [24]. The
purpose of this chapter is to describe the tools that have been used and developed to analyse these
models, specifically those that deal with the study of the long term dynamics of a probabilistic cellular
automaton.

3.1. Mean field theory approaches

In section 2.3 we used the mean field theory to obtain a density equation for the evolution of an
elementary cellular automaton, the equation obtained ignores space and assumes independence. This
approach allowed us to apply the methods of the dynamical systems theory to analyse the temporal
dynamics of the automaton. The purpose of this section is to show the use of this approach to
characterize the long term behavior when applied to ecological models.

3.1.1. A prey-predator system with pursuit and evasion

Consider the prey-predator system described in [31], the model considers a two-dimensional lattice
of width L, where periodic boundaries have been implemented, the set of states Q is defined as follows:

Q = {0, 1, 2} (3.1)

where 0 denotes an empty cell, 1 represents a cell occupied by a prey, and 2 a cell inhabited by a
predator. Depending on the current state of the cell, two different neighborhoods are considered: a von
Neumann “predation neighborhood”, and a Mr

2 “pursuit and evasion” neighborhood, this neighbor-
hood is divided into four quarters along its diagonals (see Figure 3.1), and prey and predator densities
are evaluated at each quarter. The evolution of the system is governed by the next set of rules:

1. A prey has probability dh of being eaten by a predator in its predation neighborhood.

2. If there is no predator in its predation neighborhood, a prey has probability bh of giving birth to
a prey at an empty cell of this neighborhood.

3. After having eaten a prey, a predator has probability bp of giving birth to a predator at the cell
previously occupied by the prey.

4. A predator has probability dp of dying.

27



3.1. MEAN FIELD THEORY APPROACHES

5. In order to catch prey, predators move to a cell of their predation neighborhood following the
direction of highest local prey density in the pursuit and evasion neighborhood. In case of equal
highest density in two or four directions, one of them is chosen randomly. If three directions
correspond to the same highest density, predators select the middle one. Preys move to a neigh-
boring cell in the opposite direction of highest local predator density. If the four directions are
equivalent, one is selected at random. If three directions correspond to the same maximum den-
sity, preys choose the remaining one. If two directions correspond to the same maximum density,
preys choose at random one of the other two. If H and P denote, respectively, the prey and
predator densities, then mHL2 preys and mPL2 predators are sequentially selected at random
to perform a move. This sequential process allows some individuals to move more that others.
The parameter m, which is a positive number, represents the average of the number of tentative
moves per individual during a unit of time.

Figure 3.1: Von Neumann “predation neighborhood” and Mr
2 “pursuit and evasion neighborhood”

(r = 2).

Rules 1, 2, 3, and 4 are applied simultaneously, rule 5 is applied sequentially. Predation, birth, and
death processes are modeled by a three-state two-dimensional cellular automaton.

If Ht and Pt denote the densities at time t of preys and predators respectively, and assuming that
the probability that either a prey or a predator occupies a cell is proportional to the density of the
corresponding population, then it is possible to establish the next mean-field equations:

Pt+1 = Pt − dpPt + bpHtf(1, dhPt) (3.2)

Ht+1 = Ht −Htf(1, dhPt) + (1−Ht − Pt)f(1− Pt, bhHt) (3.3)

where the function f is defined as:

f(p1, p2) = p4
1 − (p1 − p2)4

This expression can be derived as follows: if p2 = dhP (t), then p2 represents the probability that,
at time t, a prey is eaten by a predator located at a specific cell of the predation neighborhood. Then
1− (1− p2)4 = f(1, p2) is the probability that, at time t, a prey is eaten by a predator located at any
of the four cells of the predation neighborhood. If p1 = 1− P (t) and p2 = bhH(t), then p1 represents
the probability that, at time t, a specific cell is not occupied by a predator and p2 the probability
that, at time t, a prey gives birth to a prey at a specific cell. Then p4

1 − (p1 − p2)4 = f(p1, p2) is the
probability that a prey gives birth to a prey at any of the four cells of the predation neighborhood if
there are no predators in this neighborhood.

The fixed points of the mean-field equations can be obtained by solving:

dpPt − bpHtf(1, dhPt) = 0 (3.4)

Hf(1, dhP )− (1−H − P )f(1− P, bhHt) = 0 (3.5)
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P = 0 is a solution to Equation 3.4 since f(1, 0) = 0, under this conditions, equation 3.5 has
two solutions: either H = 0 or H = 1. The solution P = 0, H = 0 is always unstable if bh 6= 0.
Solution P = 0, H = 1 is stable if dp − 4bpdh > 0. If P 6= 0 another solution to equations 3.4 and 3.5
may be found, this solution may create a limit cycle through a Hopf bifurcation. Figure 3.2a shows
a fixed point in the prey-predator phase space obtained using the mean-field equations. Computer
simulations of the model shows that for these parameters, a fixed point in agreement with the mean
field approximation exists when m increases to 500 as shown by Figure 3.2c. For bp = 0.6, dp = 0.2,
bh = 0.2, and dh = 0.9. The mean-field equations predict a stable limit cycle (see Figure 3.2b),
however, such cycle is not observed for “large” lattices, however a quasi-cyclic behavior is observed
when the lattice has a size of the order of the mean displacements of the individuals (see Figure 3.2d).
Other works that study the oscillatory behavior of prey-predators lattice models report similar results,
i.e., limit cycles are observed for “small” lattices [59].
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Figure 3.2: Fixed points and limit cycles of the pursuit and evasion model.

Monetti, Rozenfeld and Albano [32] analyzed a variant of this model, however, they focused on
the study of the system’s dependence on the predator’s death and reproduction probabilities. They
found that the systems enters an oscillatory regime when a ”percolating cluster” of preys that spans
the whole lattice, and such cluster is populated by small colonies of predators.

3.2. Time series analysis

One of the most natural approaches to study the behavior of a lattice model is to analyse the
results of computer simulations. Often, the data collected represent the change in time of the number
of individuals belonging to a certain species. If each species is identified with a state of the automaton,
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then the time series contains important information about the evolution of the density of states. Since
there is nothing special about the time series produced by a lattice model, it is possible to apply any
technique that would be used to analyse a data set belonging to a discrete dynamical system, e.g.,
frequency domain analysis, statistical methods, autocorrelation analysis, etc.

3.2.1. Spectral density

A tool particularly useful to study the temporal dynamics of a lattice models is the spectral density
analysis. For a time series f(t) the spectral density analysis describes how the variance of the time
series is distributed over the frequency components into which it may be decomposed. For a discrete
time series f(t) such as the one obtained from a lattice model, spectral densities may be obtained
calculating the Fourier transform of each point in the series (see [60]) according to:

S(ωj) =
1

N

〈∣∣∣∣∣
N∑
n=1

f(t)eiωjn

∣∣∣∣∣
2〉

(3.6)

where:

ωj =
π (j − 1)

N
, j = 1, . . . , N (3.7)

It is a common procedure to subtract from each point in f(t) the mean value of the series to avoid
divergence in S(ω), when ω = 0. The resulting spectrum may be then used to detect the presence of
oscillatory behavior in the model; if such is the case, the main frequency components of the series appear
as “peaks” at the corresponding frequency (see, e.g., [32] [34] [44]); if not, the spectrum is broadly
distributed. In [61] Lipowski uses a lattice model to study the oscillatory behavior of a prey-predator
system, the evolution of the system is controlled by a parameter r that determines the probability of
birth and death of preys and predators. Computer simulations of the model in one, two and three
dimensions were performed; the results of the spectral density analysis for each corresponding time
series may be summarized as follows:

For the one-dimensional version of the model a very broad spectrum was found, this agrees with
the “random” fluctuations observed in the density plot of the simulation.

In two dimensions, the densities also evolve irregularly, however, for a certain range of the
parameter r, it is possible to observe a pronounced peak in the spectrum at a certain frequency.

The density plot for the three-dimensional version of the model shows very regular oscillations,
the corresponding spectrum has a very high and sharp peak. This oscillatory behavior can only
be observed for a certain range of r, if the value of this parameter is set too low, or too high, the
oscillations disappear.

Lipowski also observed evidence of high order harmonics in the frequency spectrum of the popula-
tion data. The author states that this behavior together with the random fluctuations inherent to the
model are responsible for the cyclic behavior of the model trough stochastic resonance.

Another example can be found in [62], the authors study a prey-predator lattice model that evolves
according to the following rules:

1. If a cell is empty, then the probability that it becomes occupied by a prey is pana/ζ, or remains
empty with probability 1− pana/ζ.

2. If a cell is occupied by a prey, then the prey is replaced by a predator with probability pbnb/ζ,
or remains a prey with probability 1− pbnb/ζ.

3. If the cell is populated by a predator, it dies with probability pc or survives with probability
1− pc.

where:
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na (nb) is the number of neighbors occupied by preys (predators).

ζ is the total number of neighbors.

pa, pb, and pc are parameters of the model associated with the birth of prey, the death of prey
and birth of predators, and the death of predators respectively.

Simulations of the model reveal a prey-absorbing state represented by a lattice full of preys, a
non-trivial fixed point where preys and predators coexist, the trivial absorbing-state where the lattice
is empty, and finally an oscillatory regime where preys and predators coexist. Besides obtaining the
period of oscillations through spectral density analysis, the authors use the features of the spectrum
to define a phase transition of the model, in particular the authors define a phase transition at the
point where the low modes of the spectral density have the same value as S(ωmax).

3.2.2. Power-law scalings and patchiness

An study concerned with the problem of determining whether population and community patterns
are intrinsic to an ecosystem, or if such patterns merely reflect environmental fluctuations or some
other random event appears in [63]. The authors argue that there exists properties of spatial patterns
that are robust to the details and parameters of local interactions, e.g. the size and perimeter of
patches of individuals belonging to the same population,

The authors studied two different lattice models: the first considers single occupancy of a cell, i.e.,
a cell might contain exactly one prey, one predator or be empty. The model uses a von Neumann
neighborhood and considers the next rules:

Prey growth. A prey chooses a neighbouring cell at random and gives birth at rate β1 onto it
only if this cell is empty.

Predators hunt for preys by inspecting their neighborhood for the presence of preys at rate 1. If
prey are present, the predator selects one at random and eats it, moving to this neighboring cell.

If a predator found a prey during the previous stages, it reproduces with probability β2, the
offspring is placed at the original cell of the predator.

Predators that do not find a prey are susceptible to starvation and die with a probability δ.

Random movements of predators occurs through mixing: neighbouring cells exchange state at a
constant rate v.

The rates specified in the rules identify an event that occurs according to a Poisson distribution
with the corresponding rate. In order to characterize the spatial dynamics a cluster is defined as a
group of cells containing a prey connected through their neighborhood. Simulations of the model show
that prey clusters change continuously as a consequence of the growth and predation process.

When the number of clusters n(s) within a given area s (the size of this area is given by the number
of cells that it contains) was measured as a function of time, it was observed that the distribution of
n(s) exhibits a power law decay over two orders of magnitude according to:

n(s) ∝ s−α (3.8)

where α = 1.99, this value was related to the Korcak exponent (a quantity originally used to describe
the distribution of Aegean islands). Simulations of the model show that the cluster size distribution is
independent of the values of β2 and δ in the coexistence regime and only weakly dependent on the other
parameters. The value of α obtained corresponds to high level of patchiness, i.e., patterns with many
small clusters. Another property worth investigating is the perimeter of clusters, which is defined as
the set of cells containing a prey, that belong to the cluster with at least one non prey neighbour cell
(a non prey cell is either occupied by a predator or empty). The mean perimeter τ(s) is then given
by averaging over the size of individual perimeters for all clusters of the same area s. When plotted
against s (the area of a cluster) it was found that the perimeter scale according to:
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τ = bsγ (3.9)

both the exponent γ and the scaling coefficient b are close to one, as a result the perimeter grows
as a power law of the area and does so almost at the fastest possible rate.

The second model, motivated by prey-predator interactions in a plankton community, considers
multiple occupancy of a cell, i.e., a cell might contain several individuals. The rules that govern the
transition of the model are as follows:

A prey takes up nutrients within the same cell with probability β1. Nourishment of a prey leads
to the production of one offspring at the same cell.

A predator finds and eats prey with probability β2, if its hunt is successful, it produces one
offspring at the same cell.

If a predator fails to find a prey, it starves and dies with probability δ.

Once the state of all cells has been updated, a random mixing of individuals and nutrients occurs
across the lattice. Each predator and prey moves with probability v to one of its four nearest
neighbors.

As before, simulation of the model shows that preys aggregate into clusters. The resulting size
distribution is similar to the model of single occupancy: it is given by a power law with exponent
α = 1.75, and is only weakly dependent on the other parameters. A power-law scaling also holds for
the perimeter of clusters as a function of the area of a cluster. Once again, the value of the exponent
ω is close to one (0.92). Thus, the two models exhibit similar power-law scalings for the prey clusters,
in spite of significant differences in the details of the processes and implementation of the transition
functions.

3.3. Finite size effects

One of the obvious limitations of lattice models is that they must be simulated using a finite
number of cells, thus an immediate question is: what effects has the size of the lattice on the long-term
dynamics of these models? A reasonable approach to deal with this question is to compare prey-
predator lattice models with other approaches that omit the spatial component, e.g., models based on
difference and differential equations; in particular, comparisons against the corresponding mean field
models have provided interesting results.

In [64] the authors analyse the dynamics of a prey-predator lattice model where individuals of the
predator species move according to two different schemes:

Homogeneous movement. All predators are redistributed randomly over the entire lattice.

Diffusive movement. Predators move randomly to one of their nearest neighbors; if the destina-
tion cell is already occupied by another predators, no movement occurs.

The dynamics of the model is compared against the corresponding set of mean field differential
equations; the results show that when predators move homogeneously, the observed dynamics of the
lattice model and the dynamics of the equations are very close (both qualitative and quantitative);
specifically, both models exhibit large amplitude oscillations for a low death rate of predators. Such
phenomenon agrees with the results of Durrett regarding the behavior of the contact process [38],
i.e., predictions made by the mean field equations become exact when the dispersal of individuals
is large. The authors also note that when predators move according to the diffusion rules, there is
no significant change in the average densities of preys and predators when compared to the results
obtained through homogeneous movement (independence of the average densities from the lattice size
has also been confirmed by Sutherland and Jacobs [65]); moreover, even tough a slight decrease in the
number of preys eaten by a predators was observed, the functional response of the predators remains
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the same. The biggest difference is that when the diffusion rule is used no oscillations are observed,
and the density of preys and predators remains more or less constant, i.e., local interactions have an
stabilizing effect on the populations. To further analyse the behavior of the model the population
dynamics at different spatial scales was studied; for each different scale, the coefficient of variation cvs
was determined as follows:

cvs = σ/mean value (3.10)

where σ is the standard deviation of the corresponding time series, this value offers a measure of
the variability in the prey and predators densities. At small spatial scales the cvs for homogeneous
and diffusive movement are similar; as the size of the lattice is increased, the two values deviate more
and more, with the cvs corresponding to diffusive movement decreasing proportionally to the square
root of the area of the lattice. The point at which the cvs corresponding to the diffusion rule deviates
from the cvs of the homogeneous movement rule is known as the “natural scale” of the system, and
can be regarded as a transition point, below which the dynamics of the diffusion rule are reminiscent of
the behavior observed when individuals move homogeneously. For larger scales however, the diffusive
movement of predators results in weak couplings between different sections of the lattice; sections that
are far away are out of phase are, which counteracts any oscillatory behavior.

Similar scalings were found by Lipowski [61] when analysing the oscillatory behavior of a prey-
predator lattice model. In order to determine the behavior of the amplitude of the observed oscillations
as L→∞ (where L is the width of the lattice of the model), the standard deviation σ of the population
data was calculated from simulations in one, two, and three dimensions, σ can be interpreted as a rough
measure of the amplitude of the oscillations. As σ is plotted against the values of r it was possible
to determine that the amplitude of the oscillations should scale according to 1/L2, thus σ → 0 as
L → ∞. For d = 1, 2 the previous argument holds, however, the data obtained from runs of 5 × 104

Monte Carlo steps for systems of linear size up to L = 150 shows that for the three-dimensional case
it is likely that σ remains finite in the thermodynamic limit.

Antal and Droz ([66]) investigated how the finite nature of a lattice model influences some key
properties of the oscillations of a prey-predators system. The model studied by the authors is actually
an spatial continuous-time Markov process where each cell can be in one of the following states: 0
(empty cell), 1 (prey), or 2 (prey and predator simultaneously). The model has the following transition
rules:

0→ 1 at rate λa (ni,1 + n1,2) /4

1→ 2 at rate λb (ni,2) /4

2→ 0 at rate 1

where ni,σ denotes the neighbors of cell i having state σ. Spreading of preys and predators are
controlled by the first two rules, the third rules represents in-cell extinction due to predation. The
mean-field model that results from the common assumption that individuals are randomly distributed
on the lattice, predicts an absorbing state where the lattice is fully covered by preys; there is also a co-
existence state in phase space where certain regions are characterized by oscillations in the populations
of preys and predators. The phase diagram of the lattice model, obtained through Monte-Carlo simu-
lations, shows a similar behavior: there is a pure prey state, and a coexistence state with and without
oscillatory behavior. The authors show that oscillation are present for large systems, though their
amplitude scales according to 1/L2 with L being the width of the lattice; such scaling implies that any
oscillatory behavior should banish in the thermodynamic limit. The authors state that the presence
of isolated predators “islands” located in sparse prey areas, which causes growing prey populations; in
time this phenomenon allows predators to disperse and feed again.

In [67] Pascual and Levin study the behavior at different spatial scales of a continuous time version
of the WATOR model, in particular, events occur according to a Poisson process with rate α according
to the following rules:

A fish gives birth at rate β1, the new individuals is placed at a neighbouring empty cell.
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A shark searches q neighbours for preys, if present, the shark chooses one cell at random, eats
the fish and moves there. The shark then gives birth with probability β2. If there is no fishes,
the shark does not move and dies with probability δ.

Stirring (movement of sharks). Each pair of neighbors exchange states at rate v.

Instead of using different lattice sizes, the densities of preys and predators are measured within an
observational window inside a lattice of 700× 700 cells. For a small window (8× 8 cells) random oscil-
lations of high amplitude are observed; at an intermediate scale (64×64 cells) there is a decrease in the
amplitude of the oscillations, but they appear to be more “smooth” with a well defined period; finally,
for a window that spans the whole lattice weak oscillations around a fixed point are observed. These
results were compared against two different mean-field models: the first is obtained by considering that
individuals are randomly distributed over the lattice, thus they interact according to average densities;
the second results from adding noise to the mean field equations, and then use such equations to
evolve an array of cells trough Monte-Carlo simulations. For the first model, the dynamics converge to
a limit cycle; however, the period of the oscillations, their modulation, as well as their variance do not
correspond to the results of the lattice model. The second model has two absorbing states: complete
extinction of preys followed by the extinction of predators, and extinction of predators followed by all
cells populated by preys. Before reaching any of these states an oscillatory transient can be observed;
however, these oscillations are fuzzy (due to the noise added to the mean-field equations) and differs
in period, variance, and modulation from the oscillatory behavior observed in the lattice model. It is
worth noting that despite these differences, the behavior of the lattice model and its corresponding
mean-field equations agree with the classification given by Durrett and Levin (see Section 1.3).

Continuing with the analysis of the continuous-time WATOR model, Durrett and Levin [68] prove
that when the mean-field equations that correspond to lattice model have an attracting limit cycle
solution, then sharks and fishes coexist in a reaction-diffusion equation that considers the stirring rate;
moreover, this result implies the existence of a stationary distribution for the lattice model whenever
the stirring rate is large enough. By now such behavior is unsurprising, as with other models, when
the dispersion of individuals is large, there is a better agreement between the lattice models and the
equations that attempt to describe their behavior.

For prey-predator lattice models where oscillatory behavior is observed, it is common that such
oscillations persist only when the model is simulated using small lattices, or when both species are
aggregate at small scales; as the size of the lattice is increased oscillations die out and only small
random fluctuations around a fixed point are observed [31] [40] [61] [64] [67] [68] [66] [69] [70].
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Chapter 4

Proposed model

Ecological models often need to be simple enough to be tractable and to help to determine the
underlying processes that drive the dynamics of an ecosystem, also they need to be complex enough to
reflect a realistic behavior. Indeed, lattice models were first considered because they offered a simple,
yet realistic enough approach to model the interactions among the organisms that comprise an ecosys-
tem. However, often only the negative effects of such interactions are considered, e.g., competition
or crowding, and beneficial effects appear only as a greater chance of reproduction. This is particu-
larly evident when the behavior of a predator is considered, most rules proposed to model predation
neglect any kind of interaction between predators: see e.g. [71]. However, cooperation is common
among animal communities: birds flocks, swarms, herds, and fish schools are good examples of the
phenomenon. A member of any of these animal groups is able to react based on the information it has
acquired on an individual basis or by communicating with the other members of the community, e.g.,
to flee from a predator or to keep a flight pattern. The observation and study of the social behavior
of animal communities led to the development of the “Swarm Intelligence” algorithms, a critical event
towards the development of Particle Swarm Optimization (PSO), was to recognize the fact that the
social behavior among organisms represents an advantage that may outweigh the negative effects of
competition [72], through cooperation an individual may benefit from the experience of other mem-
bers of the community. Surprisingly enough, even when since its inception PSO has been successfully
applied to problems such as: numerical optimization [73], the deployment of wireless sensor networks
[74] or image processing [75], its application to ecological modelling is to the best of our knowledge
non existent.

The purpose of this section is to present a lattice model where the movement of predators is
modelled trough a PSO algorithm, in order to accomplish this goal, a fitness function that measures
the local density of preys at each cell is used.

4.1. Description

Consider a theoretical ecosystem comprised by a sessile prey and a its predator. In order to ensure
their survival, predators hunt for preys, moving from zones low on resources to zones where preys are
abundant. The movement of predators occurs within a migration stage inspired by the behavior of
insects described in [76], and the related lattice model presented in [77]. A PSO algorithm is used
to model the movement of predators, i.e., each particle of the swarm represents an individual of the
predators species. We have developed two version of the proposed PSO algorithm:

Global. When using this implementation, predators move by taking into account their best
known position and the best position found by the whole swarm.

Local. In this version of the proposed PSO algorithm, particles obtain the fitness of the cells
populated by other particles in a finite neighborhood, using this information they move from
zones where food is scarce to zones populated by preys.
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a) Intraspecific
competition

Time steps = 1

b) Migration

Time steps = 5

c) Reproduction
of predators

Time steps = 1

d) Death of
predators 

Time steps = 1

e) Predation

Time steps = 1

f) Reproduction
of preys

Time steps = 1

Figure 4.1: A season of the model.

The space in which species live and interact is represented by the lattice L ⊂ Z2, periodic boundaries
have been implemented, i.e. the cellular space takes the form of a torus. The set of allowed states for
each cell is:

Q = {0, 1, 2, 3} (4.1)

where:

0 is an empty cell.

1 denotes a cell inhabited by a prey.

2 represents a cell containing a predator.

3 denotes a cell containing a prey and a predator at the same time.

Both preys and predators obey a life cycle that describes their dynamics at each time step. The
stages occur sequentially, forming a cycle that defines a “season” (see Figure 4.1). With the exception
of the migration rule, which lasts for five time steps, all stages take one time step. At each stage the
rule applied to the cells changes accordingly. It must be noted that from now on when referencing
some parameter that depends on time, e.g., P ti , such usage of t will always mean “time steps”, and
the term “season” will be stated explicitly.

1. Intraspecific competence. Preys die with a probability proportional to the number of in-
dividuals of the prey species within an Mc neighborhood (the competition neighborhood). If
ct (~n) = 1, then the probability of death (ct+1 (~n) = 0) is given by:

ρ(death) =
αh

m
(4.2)

where:

α ∈ [0, 1] is the intraspecific competence factor, which determines the intensity of compe-
tence exercised by preys in the neighborhood of cell ~n.

h is the number of preys in the neighborhood of cell ~n.

m =
∣∣M2

rc

∣∣, is the cardinality of the neighborhood.
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2. Migration. During this stage, predators move within the cellular space according to their own
experience and the information received from other members of their species. Our experiments
have shown that applying this rule during 5 consecutive time steps is enough to ensure a good
exploration of the solution space.

3. Reproduction of predators. During the reproduction stage, each predator choses randomly
a cell in the reproduction neighborhood Mz. If the cell is not already populated by a predator,
then a new predator is created at the target cell, otherwise, no reproduction takes place. This
process is repeated as many times as the reproductive capacity of the species.

4. Death of predators. Those predators that are not in a cell containing a prey, die by starvation.

5. Predation. If a predator shares a cell with a prey, then the prey is eaten by the predator.

6. Reproduction of preys. Like predators, preys spawn new individuals at random in an My

neighborhood. Reproduction is successful only if the target cells do not contain already a prey.

4.2. PSO as a migration algorithm

There are important differences in the use of PSO in traditional problems such as numerical opti-
mization [55], and its role as a migration algorithm in the proposed model:

Fitness. In numerical optimization, it is common to use the function to be optimized as a mean
to obtain a measure of a solution’s fitness. In the proposed model, the search space is given by
the lattice of the CA, so each cell represents a candidate solution to the migration problem. Since
the landscape of the ecosystem changes continuously, it is impossible to speak of an absolute best
cell, instead each predator moves to the known “good enough” zones and exploits them. Once
depleted, predators migrate to search for new zones for feeding and procreation, so instead of
aiming for a global optimum, particles exploit known local optima.

Search space. As stated before, the lattice takes the form of a torus and represents the search
space in which each particle of the swarm moves. Thus the movement of a particle might go
from one edge of the lattice to the other, this encourages exploration.

Variable swarm size. In the classical version of the PSO algorithm the size of the swarm
remain fixed for all time steps. In our model, each particle is a predator, consequently, they can
die, and they can reproduce, this changes the size of the swarm each season.

The movement of a predator changes the state of the cell from which the movement starts according
to the following state transitions:

ct (~n) = 2→ ct+1 (~n) = 0

ct (~n) = 3→ ct+1 (~n) = 1

So a cell that contains only a predator (state 2) will be empty (state 0) after the movement, and a
cell that contains a prey and a predator (state 3) will contain only a prey (state 1). Similarly, the cell
at which the predator ends its migration could experience the next state transitions:

ct (~n) = 0→ ct+1 (~n) = 2

ct (~n) = 1→ ct+1 (~n) = 3

Multiple occupancy of a cell by predators is forbidden, a predator can’t move to a cell that is
already populated by a predator. If during any of the five time steps of the migration stage, a predator
tries to move to a cell that is already populated by a predator, then no movement takes place, and the
predator remains at its original location.

Our fitness function g : Z2 → Z quantifies the density of preys in the neighborhood Mc of each cell.
Clearly the maximum fitness values is |Mc|, and the minimum value is zero.
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4.3. Global implementation

During migration a particle moves according to the information it has acquired on an individual
basis, and the information it has received from the swarm (the best position found thus far). Figure 4.2
shows the movement patterns of a group of particles as they approach a “good” zone in a simplified
lattice. Black disks represent the starting position (P ti ) of the particles, white disks denote their
positions at the next time step (P t+1

i ), and a gray disk denotes the best position known by the swarm
at time t (P tg). A solid arrow denotes the velocity (V ti ) of the particle i at time t. In Figure 4.2a the
four particles explore the neighborhood of P tg , at the next time step P4 has found a position with a
better fitness value, hence P t+1

g will be on that location (see Figure 4.2b), and now all individuals will
move there to explore the neighborhood of that zone.

(a) Initial conditions. (b) After one time step.

Figure 4.2: Movement of predators in the global implementation. (a) Individuals move to the direction
of the swarm’s best known position. (b) The swarm moves to the recently discovered “good” zone.

Even if the behavior shown by the global implementation seems reasonable enough, there are some
issues with its design: first, from a biological perspective, it is unreal that all members of the swarm
share information among them, even if they are far away from each other. Moreover, under this method
if an individual is located near to a zone with a moderate level of resources, and then is informed by
the swarm about an abundant zone that is however far away from its current location, such individual
will try to move to that location. Since the predator only has a finite amount of time to complete its
migration, there is a high chance that it will die as a consequence of this effort.

4.4. Local Implementation

The local version of our PSO algorithm aims to model the social interactions among the members
of the swarm. As two or more individuals come together, they exchange information about the current
status of the ecosystem. Predators then use this information to guide their movements to zones with a
greater level of resources. In order to model this behavior we assign to each particle i a neighborhood
Ml, inside of which a predator is able to obtain the fitness value of the cells occupied by other predators,
according to this, migration proceeds as follows:

1. The best position (P tli) among the neighbors located within the Ml neighborhood of particle i is
determined, such position corresponds to the cell with highest fitness value currently inhabited
by a particle in Ml.
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4.4. LOCAL IMPLEMENTATION

2. Once P tli has been obtained, particle i updates its velocity according to equation 2.22

3. A particle moves to its new position by adding V t+1
i to its current position Xt

i .

4. If necessary the best position known by the particle P ti is updated.

As a particle moves, its neighborhood overlaps with those of other individuals, and as a consequence
a particle is able to adapt its movement as new information becomes available. Figure 4.3a shows five
predators (depicted as black circles), and the neighborhoods (dashed lines) inside of which they obtain
the fitness of other predators (white circles). Figure 4.3b shows the updating process in detail: a black
circle depicts the current position of particle i, the best position found in the M2

rl
neighborhood is

represented as a gray circle, a black dot marks the best position known by the particle i, finally a gray
dot shows the new position of the particle.

A

(a) Overlapping neighborhoods.

A

(b) Local position updating.

Figure 4.3: Local implementation of the migration algorithm.

As a final point in the description of our model, it is convenient to summarize the parameters
involved in our experiments, such information is presented in Table 4.1.
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4.4. LOCAL IMPLEMENTATION

Parameters for preys Notation

Initial number of preys Y0

Prey’s reproduction neighborhood radius y
Per capita reproductive capacity of preys εY
Radius of the competition neighborhood c

Competition factor α

Parameters for predators

Initial number of predators Z0

Predators’ reproduction neighborhood radius z
Per capita reproductive capacity of predators εZ

Radius of the social neighborhood l
Cognitive factor k1

Social factor k2

Inertia weight ω
Maximum speed of a particle ‖V ‖max

Table 4.1: A summary of the parameters of the model

40



Chapter 5

Spatial and population dynamics

In this section we explore the temporal and spatial dynamics of the proposed model. In all figures
that follow, the next color code is used to identify the state of a cell:

Black. Denotes an empty cell (state 0).

Green. Represents a cell inhabited only by a prey (state 1).

Red. A cell that contains only a predator (state 2).

Yellow. A cell inhabited by a prey and a predator (state 3).

5.1. Analysis of the global implementation

5.1.1. Dynamics in the absence of movements

By setting k1 and k2 to zero in equation 2.22, the velocity vector of each particle is the zero vector
for all time steps. Since there is no movement of predators, only reproduction remains as a mean of the
species dispersal, which is controlled by four parameters: rY and rZ , the radius of the neighborhood
inside of which preys and predators reproduce respectively, and the per capita reproductive capacity
of each population. Under these conditions, rY and rZ determine the speed of dispersal of each
population. In Figure 5.1, the temporal dynamics of the model with a fixed rY , and an increasing rZ
are shown. As rZ grows, the speed at which the population of predators attains the carrying capacity
of the ecosystem also increases.

When the speed of dispersal and the per capita reproductive capacity of both populations are
approximately equal, the lattice is dominated by target patterns and spirals. Figure 5.2b shows the
results of a simulation with the parameters specified by Table 5.1.

Patterns such as these have been reported previously in works dealing with prey-predator spatial
models [44, 27], and all of them are examples of self-organization starting from highly heterogeneous
initial conditions. In the proposed model, the conditions that lead to these patterns are as follows:
a single cluster of predators feeds on prey leaving a group of empty patches in those locations, when
predators reproduce they expand the original cluster. Since there is no movement, those individuals in
the center of the cluster will die due to starvation, the result is a thick circle of predators. Now prey
reproduction will diminish the width of this circle, and at the same time, there is a chance that some
of the new individuals will invade the formerly empty space, and thus starting the formation of a new
pattern.

5.1.2. Social interactions, cognitive knowledge and density dependence

In this section we describe the behavior of model when the global PSO algorithm is used to model
the movement of predators. In order to accomplish this we have selected the parameters presented in
Table 5.2, we focus on the effects that the PSO parameters have on the global dynamics of the model.
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(a) rZ = 1.0
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(b) rZ = 5.0
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(c) rZ = 10.0

Figure 5.1: Temporal dynamics under an increasing predator reproduction radius.

When k2 > 0, the velocity vectors of all particles will point (to some degree) to P tg , a consequence
of this behavior, and in a typical PSO fashion [57], is that particles oscillate around this position. The
magnitude of such oscillations depend on the values taken by ω, k1, k2 and |V |max, and determine
the size of a cluster formed as predators move. Figure 5.3 shows the increase in size of such cluster as
|V |max grows, in a simulation where k1 = 0.0 and k2 = 2.0. In Figures 5.3a and 5.3b the cluster’s size is
greatly limited by a small |V |max, is worth noting that under this conditions the size of the population
of predators do not depends on the amount of resources available, moreover the impact they have on
the population of preys is negligible. As |V |max increases (Figures 5.3c to 5.3f), more preys are eaten
each season and density dependence becomes relevant, i.e., the size of the swarm depends heavily on
the amount of resources available.

When only k1 > 0, a particle moves taking into consideration only its best known position. Figure
5.4 shows the spatial patterns that results from a simulation where k1 = 2.0 and k2 = 0.0. From Figure
5.4a we can observe that most of the predators remain close to the borders between patches of preys
and empty zones. As a particle moves towards one of these borders, the fitness value of the positions
it encounters keeps improving; but eventually only two things can happen:

The fitness value of a new position is worse than that of a previous cell, so at the next time step
the particle will move to a previously visited zone.

The particle finds a zone with the highest fitness value, thus P t+1
i = P ti and the particle oscillates

around this zone until it no longer moves (due to the effects of ω).

When a particle stops moving, either because it cannot find a better position or because migration
has ended, it reproduces; after predation most of the new individuals lie near of a recently created
border, where the cycle will be repeated. Due to this process the effects of |V |max on the spatial
dynamics of the ecosystem are limited: in Figures 5.4b and 5.4c we can observe a reduction in size of
the prey patches; however, the differences with the patches shown in Figure 5.4a are minimal.
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5.1. ANALYSIS OF THE GLOBAL IMPLEMENTATION

(a) (b)

Figure 5.2: Target patterns and spirals form when the rate of dispersal of both species is approximately
equal (Lattice size = 512 × 512 cells).

Parameter Value

Migration steps 5
|Vmax| Not important
α 0.15
Y0 50% of cells
εY 10
rY 5
Z0 1
εZ 10
rZ 5
rc 1
k1 0.0
k2 0.0
ω 0.0

Table 5.1: Parameters used to produce target and spiral patterns.

Another important consequence of the pure cognitive behavior of the predators is that even if
there is no social interaction among them, the prey - predator interactions become local. When k2 > 0
“locality” is superseded by the global behavior of the swarm. We have seen that even if |V |max is small
enough to prevent long jumps across the lattice, this has the undesired effect of a limited growth of the
population of predators due to the coordinated movement, even if resources are abundant. Does this
mean that this kind of movement is wrong or unreal? It becomes unreal if prey - predator interactions
are a local process, but it is not unreasonable to think in animal populations that can travel long
distances in a relatively short time.

The population dynamics under these conditions (see Figure 5.5) reveal a strong density dependence
between both populations, this is in agreement with several works where a predator moves to zones
where the density of preys is high [44, 31, 71].

Finally if both k1 > 0 and k2 > 0 then the value taken by k2 becomes critical. Figure 5.6a shows
the results of a simulation where k1 = 1.0 and k2 = 0.05, most of the swarm is dispersed, however, since
most of the particles carry a component pointing towards P tg (which in the figure has been marked
with a ×) in their velocity vector, there is still a coordinated movement (albeit very slow) towards
that position. Figure 5.6b shows the population dynamics corresponding to these conditions, most of
the oscillations that were evidence of density dependence have almost disappeared.

As the value of k2 continues to grow the swarm becomes more compact and the behavior degenerates
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(c) |V |max = 15
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(e) |V |max = 20
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Figure 5.3: As |V |max grows the size of the cluster increases, and density dependence becomes more
evident (Lattice size = 64 × 64 cells.)
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Parameter Value

Migration steps 5
α 0.05
Y0 50% of cells
εY 2
rY 1
Z0 1
εZ 5
rZ 2
rc 5
ω 0.9 - 0.2

Table 5.2: Parameters used to investigate the behavior of the model under the effects of the PSO
algorithm.

(a) |V |max = 5 (b) |V |max = 15 (c) |V |max = 20

Figure 5.4: Dispersion of predators in a simulation where k1 = 2.0 and k2 = 0.0 (Lattice size = 64 ×
64 cells.)

into the one observed when only k2 had a small value greater than zero (see Figures 5.7a and 5.7b).
Even if the dynamics shown by the global implementation seems reasonable enough, there are

some issues with its design: first from a biological perspective, it is unreal that some sort of “collective
consciousness” inform individuals about the findings of other members of the swarm in some remote
location of the lattice. Moreover under this method, if an individual is located near of a zone with
a moderate level of resources, and then it is informed by the swarm about an abundant zone that is
however, far away from its current location, it will try to move to that location. Since the predator
only has a finite amount of time to complete its migration, there is high chance that it will die as a
consequence of this effort, this is particularly evident when k2 dominates the dynamics of the model.

Clearly most issues arise from the “global” nature of the algorithm, by adapting a local PSO to
the communication of predators it is expected that model reflects spatial dynamics that agree more
with the spatial patterns observed in nature, specially when switching to a pure cognitive movement
already results in oscillations where density dependence is present. An interesting application of a
local PSO in a CA context appears in [78], where an hybrid approach to numerical optimization is
presented, here the authors emphasise the need to strengthen the communication structures among
the particles of the swarm.
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(a) Population dynamics.
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(b) Dynamics in the Prey - Predator phase space.

Figure 5.5: Population dynamics under a pure cognitive movement.

5.2. Analysis of the local implementation

5.2.1. Social dynamics

In order to explore the social behavior of the predators, the effects of the parameters k1 and ω are
eliminated by setting them to zero, then equations 2.22 and 2.23 become:

V t+1
i = k2r2

(
P tli −Xt

i

)
(5.1)

Xt+1
i = Xt

i + V ti (5.2)

To explore the spatial and population dynamics of the local PSO algorithm we have selected
the parameters presented in Table 5.3. Such parameters depict an ecosystem where preys have an
smaller reproductive capacity than that of predators, which makes possible to observe the movement
of predators in detail. Also note that the reproduction radius of preys is bigger than the reproduction
radius of predators, which reflects the higher dispersal capacity of preys due to factors like the wind
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(a) Spatial dynamics.
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(b) Population dynamics.

Figure 5.6: As a result of a weak social factor (k2 = 0.05) and a strong cognitive factor (k1 = 1.0), the
swarm disperses, but keeps moving towards P tg .

(a) Spatial dynamics.
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(b) Population dynamics.

Figure 5.7: Density dependence is non existent as a consequence of the increase of the social factor
(k1 = 1.0 and k2 = 0.35).

or animal vectors. Finally, since we are interested in the social interactions of the predators, we use a
rather big neighborhood (radius 7) in order to observe such interaction with detail.

When k2 > 0, V t+1
i points only towards P tli . If a particle i is located at a good position, then all

particles that are neighbors of i will be attracted to it, forming a cluster whose size depends on the
radius of the social neighborhood Ml and the magnitude of the oscillations around P tli . However due
to the exploration of the search space and the reproduction of predators, a particle is able to separate
from the cluster, allowing the formation of a new pattern. Figure 5.8a shows a single cluster formed
after 10 seasons in a simulation where k2 = 1.0. Figure 5.8b shows that after 620 seasons the cluster
has separated in three new patterns. Figure 5.8c shows the ecosystem after 1000 seasons, it is possible
to distinguish regions populated by isolated clusters, and zones where two or more clusters have merged
together, due to a greater number of predators, those zones are subjected to a more intense predation.
However, the effects of these “super” clusters on the ecosystem are short lived due to the fragmentation
in smaller clusters, and the local extinctions resulting from a higher consumption of resources. As the
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Parameters for preys Value

Y0 90% of cells
y 3
εY 1
c 3
α 0.05

Parameters for predators

Z0 1
z 1
εZ 3
l 7

Table 5.3: Parameters used to analyze the behavior of the proposed model under the effects of the
local PSO algorithm.

value of k2 grows, the magnitude of the oscillations around P tli increases; consequently, there is an
increase in the size of the clusters, as shown in Figures 5.8d - 5.8f.

The effects of a k2 > 0 on the spatial dynamics of the model are specially evident when k1 and
ω are restored to values that are also greater than zero. The purpose of the ωV ti term is to enhance
the exploration of the search space at the beginning of the algorithm, and to favor the exploitation of
“good” known solutions at the final iterations of the algorithm, this is achieved through a decreasing
scaling of the velocity vector at time t by the factor ω. Figure 5.9a shows a section of the ecosystem
were two large clusters are visible at the middle, the first two migration steps are characterized by a
long range movement of predators into the zones populated by preys as shown in Figure 5.9b, these
movements result in the fragmentation of the clusters. Figure 5.9c shows that subsequent movements
will group the particles as they converge towards a common solution.

When the cognitive term is restored (k1 > 0), the velocity vector of a particle contains a component
pointing to P ti , ideally, this would cause a fragmentation of clusters as each particle moves according
to its own experience. However, the component of V t+1

i that points to P tli ensures a “coordinated”
movement towards this position even for large values of k1. So even if the clusters look more disperse
they still retain some degree of cohesion.

So far only the effects on the spatial dynamics of the model as result of the behavior of the predators
have been discussed. The next sections will focus on the population dynamics of the ecosystem, we
will pay special emphasis to the oscillatory behavior that results from an enhanced predator mobility.

5.2.2. Predator mobility and density dependence

Section 5.2.1 showed that any increase to k2 causes an increase in the size of the clusters, in
Figure 5.8c most of the ecosystem is populated by small sized clusters, as a consequence, the carrying
capacity of the population of predators is much less than that of the population of preys. The temporal
dynamics (see Figure 5.10a) reveals irregular oscillations where it is possible to observe some patterns
typical of density dependence, such irregularity is easily explained once we note that the peaks of the
plot correspond to the predations levels that arise as the consequence of the merging of two or more
clusters. Since the number of theses events during a migration stage is essentially random, and since
the size of the resulting clusters is different from season to season, the corresponding population cycle
is very irregular. It is reasonable to expect that as the value of k2 increases, the carrying capacity of
the population of preys decreases as a consequence of the pressure exercised by the predators. Figure
5.10b shows the results of a simulation where ω = 0, k1 = 0 and k2 = 1.5, besides showing the expected
decrease in the population of preys, it is possible to observe that both populations oscillate with the
typical “out of phase” behavior of prey-predator systems. The enhanced predator mobility caused by
the increase of k2, provokes a faster movement away from zones with a low fitness and increases the
rate at which the clusters merge. As a result more gaps are created each season, which translates in a
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Spatial dynamics due to the social interactions among predators. (a) Predators grouped
together. (b) A cluster divides as a consequence of a finite M2

rl
. The size of the clusters increases as

a result of a fast movement to cells with a high fitness: (c) k2 = 1.0, (d) k2 = 1.5, (e) k2 = 2.0, (f)
k2 = 2.5
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(a) (b) (c)

Figure 5.9: Effects of an ω > 0 on the movement patterns of predators: (a) Distribution before
migration. (b) During the first stages of migration, a predator executes long range movements that
will likely produce the fragmentation of a cluster. (c) The final stages of migration are characterized
by small steps that favor exploitation and form new clusters.

greater prey mortality. Figure 5.10c shows a new decrease in the number of preys obtained for ω = 0,
k1 = 0 and k2 = 2.

Besides illustrating density dependence, Figures 5.10a to 5.10c show that as the value of k2 increases,
the ecosystem enters into an oscillatory regime. Figure 5.11a shows a phase plot corresponding to the
time series of Figure 5.10a, it is possible to observe that “random” oscillations remain in the long
term time limit (after a thousand seasons). However, the phase plot for k2 = 2 that appears in Figure
5.11c shows a limit cycle at the same time lapse. This suggests that under such conditions, the time
lag between the creation of gaps, and the time until these zones are qualified again as “good” by
the predators becomes regular. It is possible to investigate further this cyclic behavior by means of
the Fourier spectra: Figure 5.11b shows the spectra corresponding to k2 = 1.0, the spectra obtained
presents a single peak at the zero frequency, which corresponds to the random patterns observed in
the time series. The spectra obtained for k2 = 2, see Figure 5.11d, shows a sharp peak at a frequency
value of 0.08 (12.5 seasons), this peak identifies the frequency component responsible for the cyclic
behavior in the time series for a value of k2 = 2. A second peak is observed at a frequency value of
0.172, i.e., twice the frequency of the first peak.

In order to further investigate the nature of the oscillations in our model, we performed additional
simulations using the parameters presented in Table 5.4, such parameters correspond to an initial con-
figuration close the prey-only absorbent distribution with a single individual of the predators species.

Figure 5.12 shows the invasion of the prey domain by predators. In Figure 5.12a several swarms
of predators grouped at the source of the invasion can be observed, due to the high density of preys,
the formation of these patterns occurs quickly after the start of the simulation. As predation takes
place, swarms move outwards following the direction of highest prey density; however, the movement
of swarms located near the source of the invasion is limited by swarms located far from the source
of the invasion: if an “inner” swarm tries to expand, it is possible for its destination to be already
occupied by an “outer” swarm, or it may also be the case that zones predated by “outer” swarms
make an expansion a futile effort. Such process results in an expanding wavefront of ”outer” swarms
moving at the same speed, while “inner” swarms remain behind (see Figure 5.12b). It must be noted
that the wavefront is not homogeneous; i.e., swarms do not cover the whole perimeter of the wave
(see Figure 5.12c), which in turn allows some preys to survive the invasion. Zones with a low density
of preys behind the wavefront are repopulated by the survivors, thus creating new clusters of preys
(see Figure 5.12d), which become the target of the “inner” swarms of predators. There is then a
division between a prey-only state ahead of the invasion front, and a coexistence state behind, where
swarms continuously migrate from zones with a low density of preys to zones highly populated by
them. Similar divisions have been analysed previously: for a two-dimensional coupled map lattice and
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(a) ω = 0, k1 = 0, k2 = 1.0
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(b) ω = 0, k1 = 0, k2 = 1.5

900 920 940 960 980 1000

Time (Seasons)

15000

20000

25000

30000

35000

P
re

ys

5000

6000

7000

8000

9000

10000

11000

12000

13000

P
re

d
at

or
s

Preys

Predators

(c) ω = 0, k1 = 0, k2 = 2.0

Figure 5.10: Population dynamics of the local implementation under an increasing k2

two-dimensional reaction diffusion equations, Sherrat et al. [28] observed periodic travelling waves
that persist or decay into irregular spatio-temporal oscillations due to being intrinsically unstable.
Arashiro et al. [29] obtained a similar division for a probabilistic cellular automaton; behind the initial
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(d) ω = 0, k1 = 0 and k2 = 2.0

Figure 5.11: Transition to the oscillatory regime.

wave front they observed a coexistence characterized by local time coupled oscillations where small
clusters of predators invade large clusters of preys. A second coexistence state where both populations
are grouped into small clusters isolated from each other was observed for a low death probability of
predators which is compensated by higher birth probabilities.

The population dynamics for the proposed model under the parameters specified by Table 4.1
is shown in Figure 5.13. The expansion of the initial wavefront produces a monotonic approach
to a non-trivial fixed point during the transient period of the system; once such approach ends, it is
possible to observe weak oscillations around the fixed point, which corresponds to subsequent travelling
waves that are produced when surviving preys repopulate the space behind the wavefront, only to be
consumed by the “inner” swarms. Such process is short lived, and waves will eventually disappear;
after the transient, both populations oscillate with a very regular period and the typical “out of phase”
behavior of prey-predator systems (see the right inset of Figure 5.13).

From an ecological point of view, the nature of the cyclic behavior of an ecosystem is diverse: time
lags in the reproductive cycles of preys and predators, migration, seasonal hunting, weather conditions,
behavioral patterns such as aggressiveness, among others [19].
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Parameter Value

Ψ0 1
εY 1
y 3
α 0.05
c 3

Φ0 1 predator = 3.8147 × 10 −6

εZ 2
z 1

Migration parameter Value

k1 1
k2 2
l 7
ω linear decrease from 0.9 to 0.2

Table 5.4: Parameters used in computer simulations.

(a) 6 seasons (b) 10 seasons

(c) 14 seasons (d) 18 seasons

Figure 5.12: Invasion of preys by predators.
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Figure 5.13: Population dynamics of the proposed model under the parameters of Table 4.1. The left
inset shows a monotonic approach to a fixed point during the transient phase of the simulations, which
corresponds to traveling wavefronts that appear during the invasion process. The right inset shows
that oscillations have a very regular period and are out of phase.
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Chapter 6

Mean field analysis

6.1. Mean field terms for the proposed model

In this section we obtain the mean field terms for each rule that comprises the proposed model,
later a complete mean field model that describes the changes in density for both populations that
occur during a season will be built using these terms. Before analysing each rule, let us introduce some
notation:

Ψt ∈ [0, 1] is the density of preys at time t.

Yt is the number of preys at time t.

Φt ∈ [0, 1] is the density of predators at time t.

Zt is the number of predators at time t.

6.1.1. Intraspecific competition

During this stage preys die with a probability proportional to the number of individuals of the prey
species within a Mc neighborhood, i.e.

P [ct+1(~n) = 0 | ct(~n) = 1] = P [ct+1(~n) = 1 | ct(~n) = 2] =
αy

|Mc| − 1
(6.1)

where:

α ∈ [0, 1] is the intraspecific competition coefficient, which determines the intensity of the com-
petition exercised by other preys in the neighborhood of cell ~n.

y is the number of preys within the neighborhood Mc of cell ~n

|Mc| is the cardinality of the neighborhood Mc.

For example, if during the intraspecific competition stage, a cell is inhabited by a prey (ct(~n) = 1),
the neighborhood M1 (c = 1) contains five preys and α = 0.5, then the prey in cell ~n dies with
probability:

P [ct+1(~n) = 0 | ct(~n) = 1] =
αy

|M1| − 1
=

(0.5)(5)

8
= 0.3125 (6.2)

In order to derive a mean field equation that describes the intraspecific competition stage, let us ask
the following: What is the expected number of deaths in a season due to the intraspecific competition?
As it was shown previously, the death of a prey depends on the number of individuals of the prey
species contained in the neighborhood Mc, it is reasonable then to expect that the mean number of
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deaths each season depends on the mean number of individuals in the neighborhood of each cell, let
ȳt represent this number.

To calculate ȳt we proceed as follows: it is clear that if Ψt = 0, then the mean number of preys in
each neighborhood Mc is also zero, similarly if Ψt = 1, then the mean number of preys within each
neighborhood Mc (excluding the prey at cell ~n) is |Mc| − 1, an interpolation between the points (0, 0
and (1, |Mc| − 1) (see Figure 6.1) gives the equation:

ȳt = (|Mc| − 1) (Ψt) (6.3)

Figure 6.1: This interpolation assumes proportionality between Ψt and the number of preys in the
neighborhood Mc.

Then, the probability that a prey dies as a consequence of the intraspecific competition is:

ȳt
|Mc| − 1

=
(|Mc| − 1) (Ψt)

|Mc| − 1
= Ψt (6.4)

The death of the all preys in the lattice is a sequence of events that can be described through a
random variable with binomial distribution X. If Yt denotes the number of preys in the lattice at time
t, then the expected number of prey deaths is given by:

EX = ΨtYt (6.5)

where E is the expected value operator, and Yt is given by:

Yt = Ψt |L| (6.6)

thus:

EX = Ψ2
t |L| (6.7)

To incorporate this quantity in the mean field equation, it must be converted into a density, this
is done by dividing EX by |L|, and scaling the result by the coefficient α, obtaining that the density
of preys that is eliminated each season is αΨ2

t . Finally the mean field equation that describes the
intraspecific competition is:

Ψt+1 = Ψt − αΨ2
t = Ψt (1− αΨt) (6.8)

6.1.2. Prey reproduction

During this stage, each prey produces new individuals at random within a neighborhood My, the
number εY of new individuals that each prey produces is known as the per capita reproductive capacity.

Consider a cell with no prey, let us call such cell u. During the reproduction stage, all neighbors
of u containing a prey might change its state, the number of neighbors being equal to |My| − 1. Since
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each neighbor chooses the location for new preys at random, the probability that a cell chooses cell u
during reproduction is:

Pu =
1

|My| − 1
(6.9)

The mean number of preys in the neighborhood of u is given by ȳt , thus the total number of
reproduction “attempts” is:

εY ȳt (6.10)

where:

εY is the reproductive capacity of preys.

ȳt = (|My|−1)(Ψt) is the mean number of preys in the neighborhood of cell u (see Section 6.1.1).

Let X denote the random variable that counts the number of times cell u is chosen for reproduction,
it is clear that X is a binomial random variable with parameters (Pu, εY ȳt). Now (1 − Pu)εy ȳt is
the probability that none of the preys in the neighborhood of u chooses it for reproduction, then
1− (1−Pu)εy ȳt is the probability that cell u is chosen at least once during the reproduction stage. The
mean density of cells with no preys that are chosen for reproduction during the corresponding stage
is:

(1−Ψt)(1− (1− Pu)εY ȳt) (6.11)

6.1.3. Death of Predators

Each season, if a predator is not located at a cell containing a prey, it dies with probability 1. The
number of predators that die each season is proportional to the number of cells not containing a prey,
the probability of finding a cell with such a property is given by:

|L| − Yt
|L| = 1− Yt

|L| = 1−Ψt (6.12)

Then the expected number of deaths that occur each season is given by:

(1−Ψt)Zt

Finally the expected decrease in density is:

(1−Ψt) Φt (6.13)

6.1.4. Reproduction of predators

This process behaves just like the reproduction of preys, the mean density of of cells not inhabited
by a predator that are chosen for reproduction during the corresponding stage is:

(1− Φt)(1− (1− Pu)εZ z̄t) (6.14)

where:

Φt is the density of predators at time t.

Pu = 1/(|Mz| − 1) is the probability that cell u becomes a target for reproduction after being
selected by a predator in the neighborhood |Mz|.

εz is the reproductive capacity of the predator species.

z̄t is the mean number of predators in the neighborhood of cell u at time t.
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6.1.5. Predation

Each season if a prey is located at a cell containing a predator, it dies with probability 1. The
probability of finding a cell with a predator is:

Zt
|L| = Φt (6.15)

The expected number of preys dying each season is:

ΦtYt (6.16)

And the expected decrease in density is given by:

ΦtΨt (6.17)

To end this section, it must be noted that since no density changes occur during the migration
stage, there is no mean field term associated to such rule, the resulting effects of migration will be
accounted in another way.

6.2. Mean field models for the long term dynamics

Tough it is entirely possible to construct a pair of mean field equations that describe the change in
density of preys and predators from the individual terms derived in the previous section, here, we will
take the simpler approach of considering the changes in density that occur through each stage of the
model, and then formulate a set of mean field equations that account for such changes.

6.2.1. Predator dynamics

As an example, consider a model where preys and predators obey the next life cycle:

Reproduction
of predators

Death of
predators

Death of
preys

Figure 6.2: A simple life cycle for preys and predators

This model does not take into account intraspecific competition or the reproduction of preys, the
corresponding set of mean field equations is:

ΦR = Φt + (1− Φt)(1− (1− Pu)εZ z̄t) (6.18)

Φt+1 = ΦR − (1−Ψt)ΦR (6.19)

Ψt+1 = Ψt − Φt+1Ψt (6.20)

where:

ΦR is the density of the predator species after the reproduction stage.

Pu = 1/(|Mz| − 1) is the probability that cell u becomes a target for reproduction after being
selected by a predator in the neighborhood |Mz|.

z̄t is the mean number of predators in the neighborhood of cell u at time t.
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Figure 6.3: Population dynamics of the reproduction of predators: mean field model and computer
simulations.

Figure 6.3 shows the population dynamics of the reproduction of predators of both the mean field
model (Equations 6.18 to 6.20) and the computer simulation. It is easy to observe that the population
of predators belonging to the mean field model grows faster than the population depicted in the
computer simulation.

To explain these differences, let’s look again at the current life cycle of preys and predators: the
last stage before the cycle starts again is the “death of preys”, during this stage all preys that share a
cell with a predator die due to predation. After this process, all remaining predators (whose density
is Φt) are located at a cell devoid of an individual of the prey species; during the “death of predators”
stage of the next season (that is at the t+1 iteration of the model) all predators of the previous season
will die due to a lack of movement of the species (we are not considering migration), thus the only
remaining individuals are those that were spawned as a consequence of the reproduction of predators,
such quantity is ΦR − Φt. The remaining predators will die according to (1 − Ψt)(ΦR − Φt). Now
during the new “death of preys” stage, all remaining predators are located at a cell that contains a
prey, so the number of preys that die represents a density equal to Φt+1. Taking into account all of
this, we can adjust our mean field model as follows:

ΦR = Φt + (1− Φt)(1− (1− Pu)εZ z̄t) (6.21)

Φt+1 = ΦR − Φt − (1−Ψt)(ΦR − Φt) (6.22)

Ψt+1 = Ψt − Φt+1 (6.23)

Figure 6.4 shows a comparison of the results obtained through this model and the corresponding
computer simulations. It is easy to observe that the adjustments made to the mean field model have
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produced better results. The remaining differences come from the fact that the mean field model does
not considers space, e.g., the mean field term for the reproduction of predators “describes” a system
where individuals are uniformly distributed, thus avoiding the saturation of space that is present in
the computer simulation of the ecosystem.
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Figure 6.4: Comparison of the population dynamics of the reproduction of predators: adjusted mean
field model vs computer simulations.

It is possible to test this hypothesis by increasing the value of z (the radius of reproduction) in
the computer simulation. Such action should decrease the saturation of space during the reproduction
stage in the CA model, thus allowing a faster growth of the population of predators. Figure 6.5 shows
a comparison for z = 10, the resulting dynamics of the predator species for the CA model shows a
growth rate that matches that of the mean field equations.

6.2.2. A model without migration

Let us now analyse a model where the only absent stage is the migration rule, the life cycle for
preys and predators that define such model is depicted in Figure 6.6.

The corresponding mean field model is given by the following set of equations:

ΨI = Ψt − αΨ2
t (6.24)

ΦR = Φt + (1− Φt)(1− (1− PZ)εZ z̄t) (6.25)

Φt+1 = ΦR − (1−ΨI)ΦR (6.26)

ΨD = ΨI − Φt+1 (6.27)

Ψt+1 = ΨD + (1−ΨD)(1− (1− PY )εY ȳt) (6.28)
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Figure 6.5: Increasing the value of z produces a good agreement of results between the mean field
equations and the CA model.
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Figure 6.6: The life cycle of a model where there is no migration stage.

where:

ΨI denotes the density of preys after the intraspecific competition stage.

ΦR is the density of the predator species after the reproduction stage.

ΨD denotes the density of the prey species after the predation stage.

PY = 1/|My| is the probability that a cell devoid of a prey be selected for reproduction by one
of its neighboring preys.

PZ = 1/|Mz| is the probability that a cell devoid of a predator be selected for reproduction by
a neighboring predator.

Note that the mean field term for the ”death of predators” stage appears in the form given in Section
6.1.3, since our current model includes the ”reproduction of preys” stage, the previous assumption
about the number of predators that survive their death is no longer valid, thus, we must assume that
the process is purely random.

Unless otherwise stated, the experiments of this section assume Ψ0 = 1.0, Φ0 = 0.001 and α = 0.1
In agreement with computer simulations of the proposed model, the mean field equations have

two trivial fixed points: the first corresponds to an ecosystem where both populations go extinct; the
second is obtained when all the individuals of the predator species die, leaving behind an ecosystem
only populated by preys. Figure 6.7 shows the plots of the population dynamics of the mean field
model and the corresponding computer simulation for εY = 1, y = 1, εZ = 1, z = 1 and c = 1.
Populations in the mean field model quickly converge towards a fixed point; whereas in the computer
simulation, there is a short oscillatory transient before equilibrium is reached. Note that the long-term
densities predicted by the mean field model are lower than those observed in the computer simulation.
Both of these outcomes are to be expected, it is well known (see, e.g., [67]) that mean field models
such as the one given by Equations 6.24 to 6.28 provide only a rough description of the dynamics of
a lattice model, since they do not take space into account and assume a “well mixed” environment
where individuals are randomly distributed on the lattice.

As with previous experiments, it is possible to obtain a better agreement of the results observed
in computer simulations and the results from the mean field model for higher values of y, z and c,
as shown in Figure 6.8. Due to the lack of a spatial component, the mean field model represents the
behavior of the CA-based model when the neighborhoods generated by y, z and c span the whole
lattice, i.e., the limit My = Mz = Mc = L. Under such conditions, preys compete globally with all
other members of their species; when reproducing individuals are able to choose any cell of the lattice
as a target for reproduction.

Figure 6.9 shows the phase plots of the mean field vs computer simulations for an increasing value
of εZ and “large” values of y, z and c. In all cases, both long-term dynamics show the presence of
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Figure 6.7: A comparison of the mean field model and a computer simulation for εY = 1, y = 1,
εZ = 1, z = 1 and c = 1
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Figure 6.8: Mean field model vs computer simulation: εY = 1, y = 20, εZ = 1, z = 20 and c = 20

a limit cycle. It is interesting to note that as the value of εZ increases, so does the amplitude of the
oscillations.

Figure 6.10 shows the corresponding results for an increasing εY , here it is possible to observe an
evolution towards a fixed point. This outcome suggests that as the reproductive capacity of preys
increases, predators have little influence on the dynamics of the prey species, the carrying capacity of
the preys barely moves from a density equal to 0.75

The mean field model developed so far has a reasonable accuracy predicting the dynamics of the
proposed CA model for large values of y, z and c, this behavior is expected since when the values taken
by these parameters are large enough, space becomes unimportant. The following section describes
a method to adjust the current mean field model in order to predict the dynamics of the CA model,
when smaller neighborhoods are used.

6.2.3. A mean field model for small neighborhoods

In order to obtain a mean field model for small neighborhoods, we will follow a methodology first
developed in [69] to determine the long term dynamics at different spatial scales of an stochastic lattice
model where time is continuous. The methodology parts from the very impressive result that certain
quantities, e.g., the growth rates of preys and predators, preserve their functional form at different sizes
of a sampling window, where the densities of preys and predators are measured. By first obtaining the
predation and prey growth rates directly from the simulation, it is possible to obtain the parameters
of the relevant function by means of statistical regression methods.

We will not make use of the “sampling window”, instead we’ll part from the assumption that the
functional forms of the rate of predation, the death rate of predators and growth rates are preserved
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Figure 6.9: Phase plots of the mean field model vs computer simulations: εY = 1, y = 20, z = 20 and
c = 10

for different sizes of the corresponding neighborhoods. As an example, consider the plot for the growth
rate of preys shown in Figure 6.11, here the rate was measured from a simulation where the only
enabled rule is the reproduction of preys; such conditions allows us to observe the whole curve that
corresponds to the functional form for the growth rate. By comparing this curve with a plot of the
mean field term for the reproduction of preys (see Equation 6.11) it is easy to see that both have the
same functional form, of course, the scale is different, which suggests that the parameters that control
the curve depend on the size of the reproduction neighborhood. Since the reproduction of predators is
analogous to the reproduction of preys, we can assume that its functional form is similar. Each mean
field term obtained in Section 6.1 defines the functional form of the corresponding stage, using this
information we can choose an appropriate regression method and obtain the value of the parameters,
e.g. εY or εZ , for a particular neighborhood size.

To analyze the methodology in detail, let’s consider again the model described in Section 6.2.2,
as can be seen in Figure 6.7 the mean field model given by equations 6.24 to 6.28 fails to predict the
behavior observed in the lattice model. This outcome is expected, since for small neighborhoods, the
growth rate of a population is limited because of the fast decay in the number of cells available for
reproduction, which differs from the unrestricted growth rates described by the corresponding mean
field terms.

We start by measuring the growth rate for both populations, for such purposes, we use a simulation
where Ψ0 = 1, Φ0 = 0.001, α = 0.1, εY = 1, y = 1, εZ = 1, z = 1 and c = 1, the simulation was
performed using a lattice of 512 × 256 cells; 10000 seasons were simulated, but only the last 9000
seasons were used in experiments, this is necessary in order to eliminate transients. To obtain a fitted
curve for the measured data, a non linear least-squares algorithm, using Equations 6.11 and 6.14 as
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Figure 6.10: Phase plots of the mean field model vs computer simulations: y = 20, εZ = 1, z = 20 and
c = 10
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Figure 6.11: Functional form for the growth rate of preys. In (a) εY = 1, 2, 3, y = 1, and Ψ0 = 0.0001;
in (b) Equation 6.11 was plotted for εY = 1, 2, 3 using 100 values of Ψt linearly distributed in [0, 1]

inputs was used. The results obtained from the regression show that the growth rate of preys behaves
as if in average εY = 0.9404, and the regression for the growth rate of predators shows that in average
εZ = 0.8543, it is interesting to note that booth parameters are lower than the values used in the
simulation, which account for the lower growth rate due to the saturation of space.

The mean field terms for the predation rate and the death rate of predators given by Equations
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6.17 and 6.13 need to be analyzed in a different way. These terms depend on both Ψt and Φt, so at first
sight, in order to obtain a fitted curve for the data, it would be necessary to use a multiple regression
method. However, we can take advantage of the fact that the first factor in both terms represents the
death probability of an individual due to predation, or to a lack of preys, while the second factor is just
the number of events that occur during the corresponding stage divided by the size of the lattice in
order to obtain a density. The functional form of the first term is that of a first order polynomial, so it
makes sense to use a polynomial regression method to obtain a fitted line for the death probability of
both populations. The only parameters that define the behavior of the predation probability and the
death probability of predators, are the coefficients of the first order polynomial for each line. For easy
reference, let us call such coefficients a, b, d, and e, thus the mean field term for the death probability
of predators can be written as follows:

b+ aΨt (6.29)

with a = −1 and b = 1, meanwhile the equation for the predation probability can be expressed as:

e+ dΦt (6.30)

with e = 0 and d = 1. The regression for the death probability of predators gives the coefficients
a = −0.5513, b = 0.9040, meanwhile the results for the predation probability give the values d = 1.2617
and e = −0.0011. Table 6.1 summarizes the results obtained so far, and presents some additional results
for different sets of parameters used in computer simulations. Note that in all cases, the obtained values
of εY or εZ are less than the corresponding values used in the simulations, also note that as we increase
the value of y or z the values obtained in the statistical regression approach the values of the simulation.
As expected, a plot of the population dynamics of the simulation, and the mean field model with the
adjusted parameters, as seen in Figure 6.12, shows a good agreement of the results.

CA parameters
Statistical regression

εY εZ a b d e

εY = 1, y = 1, εZ =
1, z = 1, α = 0.1,
c = 1

0.9404 0.8543 -0.5513 0.9040 1.2617 -0.0011

εY = 1, y = 1, εZ =
2, z = 5, α = 0.1,
c = 1

0.9365 1.9563 -0.8537 0.9854 1.5994 -0.0840

εY = 3, y = 1, εZ =
1, z = 1, α = 0.1,
c = 1

2.3234 0.9484 -0.8947 0.9845 1.1752 0.0815

εY = 3, y = 5, εZ =
1, z = 1, α = 0.1,
c = 1

2.9429 0.9746 -1.0280 1.0757 1.0245 0.1374

Table 6.1: Adjusted parameters for the mean field model via statistical regression.

6.2.4. The migration stage

To finish the analysis of the proposed model, let’s turn now our attention to the migration stage,
here, predators move to catch preys according to a local PSO algorithm. No change in density occurs
during this stage, predators merely move from zones where the local density of preys is low, to zones
more abundantly populated by preys, as stated before, predation and the death of predators occur at
later stages. The migration stage was inspired by the behavior of insects described in [76], and the
related lattice model presented in [77]. It has been shown previously (see [79]) that as a consequence
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(a) εY = 1, y = 1, εZ = 1, z = 1 α = 0.1, c = 1
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(b) εY = 1, y = 1, εZ = 2, z = 5 α = 0.1, c = 1

0 100 200 300 400 500

t (seasons)

0.0

0.2

0.4

0.6

0.8

1.0

P
op

u
la

ti
on

d
en

si
ty

Simulation preys

Simulation predators

Mean field preys

Mean field predators

(c) εY = 3, y = 1, εZ = 1, z = 1 α = 0.1, c = 1

Figure 6.12: Comparison of the results obtained from the computer simulations and the results of the
mean field model with adjusted parameters.
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of the movement of predators during the migration stage, the individuals of this population group
into clusters that propagate through the lattice. The size of the clusters depends on the size of the
social neighborhood, and on the values of the parameters k1 and k2, the cognitive and social factor
respectively. Furthermore, it was found that as the value of k2 increases, the population dynamics
of the model enter an oscillatory regime. Due to the movement of predators during the migration
stage, we can expect a change in the death probability of a predator when comparing against the
results obtained in a simulation where no migration occurs. Ideally, migration should provide better
conditions for the survival of a predator, or the survival of its progeny; however, the effects of such
change on a global scale are not easily predicted. To test our hypothesis, we have selected the parameter
sets shown in Table 6.2, set A disables the movement of predators, so parameters like k1 and k2 are
set to zero.

Parameter Set A Set B

Ψ0 0.9 0.9
εY 1 1
y 3 3
α 0.05 0.05
c 3 3

Φ0 0.001 0.001
εZ 2 2
z 1 1

Migration parameter Set A Set B

k1 0 1
k2 0 1
l 1 7
ω 0 linear decrease from 0.9 to 0.2

Table 6.2: Parameters used to analyse the migration stage.

For both simulations, we have measured the following quantities: (a) the density of preys at the
start of the death of predators stage ΨI ; (b) the death probability of predators. Figure 6.13 shows
these measurements, it is easy to see that when set A is used, our data concentrates in an small area,
which corresponds to an orbit towards a fixed point obtained when no migration occurs. Due to the
oscillatory behavior resulting from the movement of predators, the data obtained for set B follows
a pattern akin to a limit cycle, thus spanning a wider area. The results show a lower density of
preys for set B, nevertheless, the corresponding death probability of predators is lower than the death
probability observed in set A. These results suggest that predators hunt with a greater efficiency, i.e.,
they survive under more adverse conditions when the migration stage is active. Note also that the
functional form for the death probability of predators remains unchanged by the migration stage.

We may use then the procedure described in Section 6.2.3 to generate a mean field model that takes
into account the effects of migration. Table 6.3 shows the parameters obtained through statistical
regression for both simulations. Note that the value of εZ obtained for set B is lower than the value
obtained for set A, such result is to be expected, since when migrating, predators form clusters, which
reduces the space available for reproduction.

Figure 6.14a shows a comparison between a simulation that uses set B, and a mean field model that
uses the corresponding parameters from Table 6.3, a non-trivial fixed point where both populations
coexist can be observed; as expected, the mean field model using adjusted parameters provides an
accurate prediction of the long term density of both populations after a very short transient. However,
the dynamics of the lattice model shows small oscillations around the predicted density. Increasing
the value of k2 in set B, drives the dynamics of the lattice model towards oscillatory behavior. Figure
6.14b shows such phenomenon for k2 = 2, it is easy to see, that the densities predicted by the adjusted
mean field model correspond to the points around which the densities of preys and predators oscillate
when the migration stage is enabled; once again, a mean field model that includes adjusted parameters
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Figure 6.13: Measurements of the death probability of predators for parameters sets A and B.

Parameter set
Statistical regression

εY εZ a b d e

A 0.9053 1.7098 -0.6808 0.9302 1.5220 0.0478
B 0.8520 0.9485 -0.8542 0.8225 1.5076 0.0990

Table 6.3: Parameters obtained through statistical regression for simulations using parameters sets A
and B.

is only able to predict the mean long term density of both species, failing to predict the oscillations
observed in the lattice model. We may summarize the effects of the movement of predators on the
carrying capacity of the populations as follows: when moving towards zones where the density of preys
is high, a predator increases their chance of survival; also, it increases the probability that its progeny
survives the “death of predators” stage. With a greater number of predators surviving, there is an
increase in the predation probability, which increases the death rate of preys. It is interesting to note
that by increasing their odds of survival, the population of predators create harsher conditions for their
species, despite the fact that predators are able to survive under such conditions, the carrying capacity
of both preys and predators is lower than the densities observed under a “well mixed” environment.

Besides changing the mean density of the populations, the movement of predators also causes a
transition to the oscillatory behavior. The oscillations have a very regular period, however, their
amplitude, while bounded, is very difficult to predict (see Figure 5.13). Previous works have shown
that such oscillations in a prey-predator system should banish in the thermodynamic limit (see [66]
[61] [31] [40] [70] [80]), i.e., their amplitude diminishes as the size of the lattice is increased. To
investigate such phenomenon, we performed additional computer simulations for lattices of size 26+i

for i = 0, 1, 2, 3, 4, 5, i.e., from a lattice of size 64× 64 cells to a lattice of size 2048× 2048 cells; 10000
seasons were simulated using the parameters of Table 4.1. To obtain a measure of the amplitude of the
oscillations, we calculated the standard deviation of the time series of the density of preys, since the
predators species has a similar behavior, we do not report those data. Figure 6.15 shows the results of
our simulations, as expected, the amplitude of the oscillations decays as the size of the lattice increases:
for small lattices, an evolution towards a noisy limit cycle can be observed; as the size increases, the
limit cycle destabilizes and the pattern of Figure 5.13 appears. Additional increments to the size of the
lattice further diminish the amplitude; however, in stark contrast to the results reported in [31] where
noisy oscillations of low amplitude are observed for large lattices, we have found that the qualitative
behavior of the density of preys remains unchanged: the amplitude of the oscillations is still bounded,
but difficult to predict, and their period is preserved. Such behavior raises the need to emphasize
the differences between our model and previous work where scaling effects are studied. First it must
be noted that our predators have a higher mobility than the one commonly found in other lattice
models, where dispersal (whether by movement, reproductive processes, or both) is restricted to first
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Figure 6.14: Simulations using set B compared to a mean field model that uses adjusted parameters
via statistical regression.

neighbors. It is well known that large dispersal ranges bring the distribution of individuals on the
lattice close to the “well mixed” case [40] [81], so oscillations might arise as a consequence of long
range movement. Second, the spatial dynamics of oscillating prey-predator systems are commonly
characterized by patterns akin to the initial invasion process, i.e., there are fronts of predators that
invade prey rich areas leaving behind a few cells populated by preys, these survivors quickly repopulate
predated areas and the process starts again, Rozenfeld and Albano refers to these phenomena as
“alternating percolation events” [34]. As noted in section 5.2.2, in the proposed model such events
are only observable during the transient phase; afterwards, we observe predators grouped together as
swarms moving through the whole lattice while searching for zones with a “good” density of preys (a
curious enough reader might wish to compare the spatial patterns found in [66] [31] [70] and [34] with
Figure 5.8), the oscillatory behavior observed when migration is enabled suggest that the time lapse
between the predation of a particular zone by a swarm and the moment until such zone is qualified
again as ”good” by a swarm is regular.
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Figure 6.15: Scaling behavior of the proposing model. Small lattices produce orbits to a noisy limit
cycle; as the size of the lattice increases, the amplitude of the oscillations diminishes and the limit cycle
destabilizes. For large lattices a new decrease of the amplitude is observed; however, the oscillations
still have a regular period and their amplitude remains bounded, yet difficult to predict.
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Chapter 7

Conclusions

We presented a qualitative analysis of the spatial and population dynamics of a prey-predator
system, where the movement of predators is modelled through a PSO algorithm. So when moving a
predator not only takes into account the information it has acquired by itself, but it also evaluates the
information that comes from other individuals in a finite neighborhood.

It is worth noting that the implementation of the PSO algorithm presented here is one of many
possible designs that would be adequate to model the social interactions among organisms in lattice
models. A first step would be the design of other fitness functions that qualify each cell of the lattice
according to other environmental factors besides density, e.g., temperature, pollution, soil nutrients,
etc. Another possibility comes from the fact that the neighbors who influence the decision of a particle,
does not necessarily have to be those nearer in a geometrical sense, but may be those closer according to
some hierarchy existing in the population, according to Kennedy and Eberhart [57]: “Who influences
you is defined by your connections in the social network, not by positions in a belief space”.

Our results show that in the absence of movement, the spatial patterns observed correspond to those
of a diffusion process. When working with the global version of our PSO algorithm, a pure cognitive
movement of predators produce a high density dependence between both populations. Under this
conditions the movement of predators is restricted to the borders between empty space and the zones
populated by preys. Social interactions result in a coordinated movement of the whole population,
thus the spatial dynamics shows a single cluster moving through the lattice, this limits the growth of
the predators even if resources are abundant.

The analysis of the local implementation of the model shows that by increasing the mobility of
predators towards zones with a high fitness, the time lag between the creation of gaps, and the
moment when these zones are repopulated and thus qualified again as “good zones” becomes regular
as illustrated by the time series belonging to both populations. Such behavior is consistent with
previous works dealing with the cyclic behavior of prey-predator systems. We have also shown that our
local PSO algorithm increases the proficiency of predators, which produces a decrease in their death
probability with respect to a simulation where no migration occurs. A higher density of predators
results in an increase in the predation probability with a corresponding decrease in the density of
preys.

Our results show that quantities such as the growth rates, and the probabilities of predation and
death of predators, preserve their functional form for different sizes of the corresponding neighborhoods.
This outcome makes possible to generate a mean field model that predicts accurately the mean densities
that characterize the long-term dynamics of the proposed model. For large sized neighborhoods, the
dynamics of the lattice model match those of a mean field model whose parameters describe a well
mixed environment, here limit cycles are common. For small neighborhoods, adjusting the parameters
of the mean field model through statistical regression methods, produces orbits to fixed points that are
also observed in the lattice model. Finally, for mid sized neighborhoods, the proposed methodology is
only able to predict the mean densities of the populations, failing to reproduce the oscillatory behavior
observed in the lattice model, here we found evidence of sensitivity to initial conditions.

When the movement of predators is included in the simulations, a change in the death probability
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of predators occurs due to such movement; nevertheless, the functional form of the death probability
of predators remains unchanged. Thus, the effects of the migration stage can be taken into account
by the proposed methodology. However, when an increase to k2 (the social factor) drives the lattice
model into oscillatory behavior, the methodology is once again unable to reproduce such behavior,
predicting orbits to a fixed points that represents the mean density of preys and predators.
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thesis, Centro de Investigación y de Estudios Avanzados del IPN, 2007.

[8] Leon O. Chua. A nonlinear dynamics perspective of wolfram’s new kind of science part i: Thresh-
old of complexity. International Journal of Bifurcation and Chaos, 12:2655–2766, 2002.

[9] Eytan Domany and Wolfgang Kinzel. Equivalence of cellular automata to ising models and
directed percolation. Physical Review Letters, 53(4):311–314, 1984.

[10] Joel L. Lebowitz, Christian Maes, and Eugene R. Speer. Statistical mechanics of probabilistic
cellular automata. Journal of Statistical Physics 1990, 59:117–170, 1990.

[11] G. A. Kohring and M. Schrekenberg. The domany-kinzel cellular automaton revisited. Journal
of Physique I, 2:2033–2037, 1992.
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[29] Everaldo Arashiro and Tânia Tomé. The threshold of coexistence and critical behavior of a
predator-prey cellular automaton. Journal of Physics A, 40:887–900, 2007.

[30] Feng Fu, Martin A. Nowak, and Hauert Christoph. Invasion and expansion of cooperators in lattice
populations: Prisoner’s dilemma vs snowdrift games. Journal of Theoretical Biology, 266:358–366,
2010.

[31] N. Boccara, O. Roblin, and M. Roger. Automata network predator-prey model with pursuit and
evasion. Physical Review E, 50:4531–4541, 1994.

[32] Roberto Monetti, Alejandro Rozenfeld, and Ezequiel Albano. Study of interacting particle sys-
tems: the transition to the oscillatory behavior of a prey-predator model. Physica A: Statistical
Mechanics and its Applications, 283:52–58, 2000.

[33] Alejandro Rozenfeld and Ezequiel Albano. Study of a lattice-gas model for a prey-predator system.
Physica A: Statistical Mechanics and its applications, 266:322–329, 1999.

[34] Alejandro F. Rozenfeld and Ezequiel V. Albano. Critical and oscillatory behavior of smart preys
and predators. Physical Review E, 63:061907, 2001.

[35] Zi-zhen Li, Meng Gao, Cang Hui, Xiao-zhuo Han, and Honghua Shi. Impact of predator pursuit
on prey evasion on synchrony and spatial patterns in metapopulation. Ecological Modelling,
185:245–254, 2005.

75



BIBLIOGRAPHY

[36] Xueting Wang, He Mingfeng, and Yibin Kang. A computational predator-prey model, pursuit-
evasion behavior based on different range of vision. Physica A, 391:664–672, 2012.

[37] Richard Durrett. The contact process, 1974-1989. Lectures in Applied Mathematics, 27:1–18,
1991.

[38] Richard Durrett and Simon A. Levin. Stochastic spatial models: A user’s guide to ecological
applications. Phil. Trans. R. Soc. B, 343:329–350, 1994.

[39] Carol Bezuidenhout and Geoffrey Grimmet. The critical contact process dies out. The annals of
probability, 18:1462–1482, 1990.

[40] Richard Durrett and Simon A. Levin. The importance of being discrete (and spatial). Theoretical
Population Biology, 46:363–394, 1994.

[41] Richard Durrett. Are there bushes in a forest? Stochastic Processes and their Applications,
37:19–31, 1991.

[42] Ilkka Hankski and Esa Ranta. Coexistence in a patchky environment: Three species of daphnia
in rock. Journal of Animal Ecology, 52:263–279, 1983.

[43] Richard Durrett and Claudia Neuhasser. Coexistence results for some competition models. The
Annals of Applied Probability, 7:10–45, 1997.
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