Resumen |
In order to control mechanical systems, this paper proposes a novel fast control strategy. The controller includes a normal proportional and derivative (PD) regulator and a fuzzy cerebellar model articulation controller (CMAC). For an overhead crane, this control can realize both position tracking and anti-swing. Using a Lyapunov method and an input-to-state stability technique, the PD control with CMAC compensation is proven to be robustly stable with bounded uncertainties. Real-time experiments are presented comparing this new stable control strategy with regular crane controllers. |