Autores
Guzmán Ramírez Enrique
Pogrebnyak Oleksiy
Yáñez Márquez Cornelio
Sánchez Fernández Luis Pastor
Título Morphological Transform for Image Compression
Tipo Revista
Sub-tipo JCR
Descripción EURASIP Journal on Advances in Signal Processing
Resumen A new method for image compression based on morphological associative memories (MAMs) is presented. We used the MAM to implement a new image transform and applied it at the transformation stage of image coding, thereby replacing such traditional methods as the discrete cosine transform or the discrete wavelet transform. Autoassociative and heteroassociative MAMs can be considered as a subclass of morphological neural networks. The morphological transform (MT) presented in this paper generates heteroassociative MAMs derived from image subblocks. The MT is applied to individual blocks of the image using some transformation matrix as an input pattern. Depending on this matrix, the image takes a morphological representation, which is used to perform the data compression at the next stages. With respect to traditional methods, the main advantage offered by the MT is the processing speed, whereas the compression rate and the signal-to-noise ratio are competitive to conventional transforms.
Observaciones Received: 29 August 2007; Revisions received: 30 November 2007; Accepted: 4 April 2008; Published: 20 April 2008
Lugar
País Suiza
No. de páginas 1-15
Vol. / Cap. 2008
Inicio 2008-04-20
Fin
ISBN/ISSN