Autores
Ríos Gaona Miguel Ángel
Gelbukh Alexander
Título Recognizing Textual Entailment Using a Machine Learning Approach
Tipo Congreso
Sub-tipo SCOPUS
Descripción Lecture Notes in Computer Science
Resumen We present our experiments on Recognizing Textual Entailment based on modeling the entailment relation as a classification problem. As features used to classify the entailment pairs we use a symmetric similarity measure and a non-symmetric similarity measure. Our system achieved an accuracy of 66% on the RTE-3 development dataset (with 10-fold cross validation) and accuracy of 63% on the RTE-3 test dataset.
Observaciones 9th Mexican International Conference on Artificial Intelligence, MICAI 2010; Code 82886; ISBN: 3642167721;978-364216772-0
Lugar Pachuca
País Mexico
No. de páginas 177-185
Vol. / Cap. Vol. 6438, Issue 2
Inicio 2010-11-08
Fin 2010-11-13
ISBN/ISSN 3642167721;978-36421