Autores
Gómez Adorno Helena Montserrat
Sidorov Grigori
Título CICBUAPnlp at SemEval-2016 Task 4-A: Discovering Twitter Polarity using Enhanced Embeddings
Tipo Congreso
Sub-tipo Memoria
Descripción 10th International Workshop on Semantic Evaluation, SemEval 2016
Resumen This paper presents our approach for SemEval 2016 task 4: Sentiment Analysis in Twitter. We participated in Subtask A: Message Polarity Classification. The aim is to classify Twitter messages into positive, neutral, and negative polarity. We used a lexical resource for pre-processing of social media data and train a neural network model for feature representation. Our resource includes dictionaries of slang words, contractions, abbreviations, and emoticons commonly used in social media. For the classification process, we pass the features obtained in an unsupervised manner into an SVM classifier.
Observaciones
Lugar San Diego, California
País Estados Unidos
No. de páginas 145-148
Vol. / Cap.
Inicio 2016-06-16
Fin 2016-06-17
ISBN/ISSN 9781941643952