Resumen |
This paper presents our approach for SemEval 2016 task 4: Sentiment Analysis in Twitter. We participated in Subtask A: Message Polarity Classification. The aim is to classify Twitter messages into positive, neutral, and negative polarity. We used a lexical resource for pre-processing of social media data and train a neural network model for feature representation. Our resource includes dictionaries of slang words, contractions, abbreviations, and emoticons commonly used in social media. For the classification process, we pass the features obtained in an unsupervised manner into an SVM classifier. |