Autores |
---|
Camacho Nieto Oscar |
Yáñez Márquez Cornelio |
Villuendas Rey Yenny |
Título | Undersampling Instance Selection for Hybrid and Incomplete Imbalanced Data |
Tipo | Revista |
Sub-tipo | JCR |
Descripción | Journal of Universal Computer Science |
Resumen | This paper proposes a novel undersampling method, for dealing with imbalanced datasets. The proposal is base don a novel intance importance measure (also introduced in this paper), and i sable to balance hybrid and incomplete data. The numerical experiments carried out show the proposed undersamplimng algorithm outperform others algoritms of the state of art, in well-known imbalanced datasets. |
Observaciones | JCR Q4 http://www.jucs.org/jucs_26_6/undersampling_instance_selection_for |
Lugar | New York |
País | Estados Unidos |
No. de páginas | 698-719 |
Vol. / Cap. | v. 26 no. 6 |
Inicio | 2020-06-28 |
Fin | |
ISBN/ISSN |