Autores
Cortés Antonio Prometeo
Batyrshin Ildar
Martínez Cruz Alfonso
Villa Vargas Luis Alfonso
Ramírez Salinas Marco Antonio
Molina Lozano Herón
Título Learning rules for Sugeno ANFIS with parametric conjunction operations
Tipo Revista
Sub-tipo JCR
Descripción Applied Soft Computing
Resumen The paper presents a Sugeno Adaptive Neuro-Fuzzy Inference System with parametric conjunction operations architecture, ANFIS-CX. The advantages of using parametric conjunction operations in fuzzy models are discussed, and learning rules for system identification with such operations are proposed. These learning strategies can include steepest descent gradient, differential evolution and least square estimation algorithms for tuning antecedent, conjunction, and consequent parameters, respectively. The results of system identification by parameter tuning of conjunction operations in addition to or instead of parameter tuning of the input membership functions are presented. Simulation results show that parameter training in conjunction operations, composed of four basic t-norms, significantly improves the approximation capability of fuzzy models. 
Observaciones DOI 10.1016/j.asoc.2020.106095
Lugar Amsterdam
País Paises Bajos
No. de páginas Article number 106095
Vol. / Cap. v. 89
Inicio 2020-04-01
Fin
ISBN/ISSN