Autores
Aroyehun Segun Taofeek
Gelbukh Alexander
Título NLP-CIC at HASOC 2020: Multilingual offensive language detection using all-in-one model
Tipo Congreso
Sub-tipo Memoria
Descripción 12th Forum for Information Retrieval Evaluation, FIRE-WN 2020
Resumen We describe our deep learning model submitted to the HASOC 2020 shared task on detection of offensive language in social media in three Indo-European languages: English, German, and Hindi. We fine-tune a pre-trained multilingual encoder on the combination of data provided for the competition. Our submission received a competitive macro- average F1 score of 0.4980 on the English Subtask A as well as comparatively strong performance on the German data.
Observaciones CEUR Workshop Proceedings
Lugar Hyderabad
País India
No. de páginas 331-335
Vol. / Cap. v. 2826
Inicio 2020-12-16
Fin 2020-12-20
ISBN/ISSN