Autores
González Patiño David
Saldaña Pérez Ana María Magdalena
Argüelles Cruz Amadeo José
Título A Novel Bioinspired Algorithm for Mixed and Incomplete Breast Cancer Data Classification
Tipo Revista
Sub-tipo JCR
Descripción International journal of environmental research and public health
Resumen The pre-diagnosis of cancer has been approached from various perspectives, so it is imperative to continue improving classification algorithms to achieve early diagnosis of the disease and improve patient survival. In the medical field, there are data that, for various reasons, are lost. There are also datasets that mix numerical and categorical values. Very few algorithms classify datasets with such characteristics. Therefore, this study proposes the modification of an existing algorithm for the classification of cancer. The said algorithm showed excellent results compared with classical classification algorithms. The AISAC-MMD (Mixed and Missing Data) is based on the AISAC and was modified to work with datasets with missing and mixed values. It showed significantly better performance than bio-inspired or classical classification algorithms. Statistical analysis established that the AISAC-MMD significantly outperformed the Nearest Neighbor, C4.5, Naïve Bayes, ALVOT, Naïve Associative Classifier, AIRS1, Immunos1, and CLONALG algorithms in conducting breast cancer classification.
Observaciones DOI 10.3390/ijerph20043240
Lugar Basel
País Suiza
No. de páginas
Vol. / Cap. v. 20 no. 4
Inicio 2023-02-13
Fin
ISBN/ISSN